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ABSTRACT

Coronary artery disease is a leading cause of death in the Western world. Symp-

toms present only late in the progression of the disease, limiting treatment options;

moreover, the inability to biopsy arterial tissue in a living patient makes it di�cult to

study the pathology e�ectively. 89 patients were imaged twice at a one year interval

using x-ray angiography (the traditional modality for assessment of arterial stenosis)

and intravascular ultrasound (IVUS), which yields a detailed image of the structure

of the vessel wall. 32 of these 89 patients were made available for analysis in this

study.

The Volcano Corp. IVUS acquisition systems include software that provides a vir-

tual histology (VH) characterization of plaque composition that provides information

otherwise only available by biopsy. Using a geometric reconstruction method de-

scribed in previous work, a full working model of wall shear stresses (WSS) produced

by blood �ow and vessel wall composition is created. Using these, the morphologic

structural information gleaned from the 3-D reconstruction, and some additional com-

posite indices, combined with demographic information collected at enrollment and

serum biomarkers collected from each patient during imaging, a detailed portrait of

each patient's disease state is created, with the objective of predicting disease evolu-

tion over a 1 year timescale.

We have, in the course of this study, accomplished the following 5 aims towards

the goal of predicting localized changes in disease state on a 1 year timescale: Aim 1:

Develop and validate a method of compensating for rotational motion of the catheter

within the vessel and its e�ect upon the 3-D orientation of the reconstruction. Aim 2:

Develop and validate a method of registering the reconstructed vessels that permits

identi�cation of a point-to-point correspondence on all quantitative indices. Aim 3:

Successfully reconstruct, register, and analyze image sets for each of as many patients

as possible for analysis. Aim 4: Identify statistically signi�cant indices in the data
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suitable for use as features in a classi�er. Aim 5: Construct and assess performance of

a classi�cation system that can draw useful conclusions about the 1-year progression

of the arterial pathology in a patient not used in the training set.

Aim 2 was a complete success. Branches were reliably present in the IVUS data in

su�cient quantities to facilitate reliable identi�cation of the overlap and the requisite

spatial transformation required to map points from one pullback onto another.

Aim 1 was much more problematic. While a method was developed which showed

promise, the image acquisition protocol did not provide for orientation of the an-

giograms with an eye towards bifurcation identi�cation. With neither an analytic

model, nor reasonable �ducials, the method developed could only be tested on a

small subset of the data, limiting both our con�dence in its validation, as well as

its usability in this study. It is hoped that the method can be re�ned and used in

any subsequent study, given proper planning during the acquisition of the images,

and that in turn the spatial reliability of the reconstructions can be improved beyond

what is possible today.

Regarding aim 3, 32 patients were ultimately processed completely.

Aims 4 and 5 were completed successfully. Meaningful correlations were identi�ed

in the data, and the results illustrate that while we were by no means able to obtain

perfect classi�cation, we were able to handily beat a both a random, and a maximum

likelihood classi�er.
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CHAPTER 1
OVERVIEW

1.1 Background

At its heart this work is motivated by our e�orts to develop and validate a method

to characterize the progression of plaque formations as related to atherosclerotic coro-

nary artery disease (CAD) in-vivo.

Coronary atherosclerosis starts at a young age and advances until occlusive coro-

nary heart disease causes chronic symptoms such as angina, or the rupture of vul-

nerable plaque causes acute symptoms, up to and including myocardial infarction or

sudden death. Clinical prognosis for patients with coronary atherosclerosis is directly

related to the progression of the disease, thereby making the methods for monitor-

ing disease progression and regression crucial in both the detection and the treat-

ment of the disease. Emerging evidence of the initiation and progression of coronary

atherosclerosis reveals a complex process where genetic factors interact with in�am-

matory, thrombotic, and other systemic factors, as well as vascular mechanics and

hemodynamics.

Modalities currently in use for assessing coronary artery disease in vivo include

x-ray angiography (the oldest tool for assessing stenosis) [1], intravascular ultrasound

(IVUS) [2], computed tomography (CT) [3], and optical coherence tomography (OCT)

[4]. CT provides the most geometrically/spatially accurate portrait of the vasculature

by virtue of being a true 3-D imaging modality, however, it lacks the spatial resolution

of IVUS and OCT, and like traditional x-ray angiography, is poorly suited to imaging

the vessel wall itself, and therefore is useful primarily for assessing stenosis, but

not for analyzing speci�c lesions. OCT has the highest spatial resolution of any

modality, and by virtue of its speed of acquisition, avoids the need to gate the images

against the electrocardiogram (ECG) signal. However, it lacks the depth of �eld of

IVUS. Both OCT and IVUS may be combined with x-ray angiography using the 3-D
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reconstruction technique described in [5], and used in this project, to obtain a 3-D

model of the vessel.

While x-ray angiography provides a less detailed picture of interior structures

than IVUS, due primarily to the lack of radio-opacity of vascular soft tissue, it is cru-

cial for the 3-D reconstruction required for accurate morphologic and hemodynamic

analysis. Wahle et al. have previously developed methods for geometrically correct

reconstruction of IVUS [5], as well as analysis of coronary hemodynamics [6],[7],[8].

A combination of either IVUS or OCT, and x-ray angiography, was required for

this study, because of the need to examine morphologic features of the plaque and

their impact upon vessel hemodynamics. IVUS was chosen because of its greater

depth of �eld, and, more importantly, because of the possibility of including a virtual

histology (VH) analysis, wherein the composition of the plaque is inferred from the

ultrasound signal. This technique was developed in Nair [9], and is peculiar to the

proprietary software bundled with the acquisition system used for the IVUS, as well

as an o� line version of the software supplied to us by the vendor (Volcano Corp., San

Diego, CA). This type of analysis is unique to IVUS because it relies on an analysis

of the raw ultrasound signal, and provides a compelling case for use of the modality

in this type of study.

X-ray angiography is often used to assist in localization of the catheter within the

artery, but this is not required for pure clinical IVUS. Our acquisition protocol as

developed at the beginning of the study (see [10]) does call for concurrent angiograms

and IVUS in order to facilitate an accurate 3-D reconstruction; the protocol was

not always rigorously followed by the collaborating clinicians, which in some extreme

cases required data to be excluded from the study (see section 1.5).

In this work, we demonstrate a body of work that uses a variety of techniques to

extract useful quantitative indices (section 4.2) from angiographic and IVUS image

sets, and then trains a classi�cation system on this data in order to make useful
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inferences about the progression of plaque structure and composition, and therefore

the way the disease evolves over the course of a year. Biomarkers, demographics, and

genetics are also used when available.

1.2 Project History

Previous work on this project has focused on the development of image segmen-

tation techniques and the development of an integrated suite of tools for tracking the

joint analysis of angiograms and IVUS images. Olszewski [11] integrated the older

generation of tools on which much of the software in this project is based into a

coherent suite whose functions included

• Importation of angiograms and IVUS data sets from DICOM as individual

raster frames.

• De-warping of angiograms acquired using the older CRT-style image intensi�er

(described by Prause [12]).

• Segmentation of both angiograms (using dynamic programming, �rst on the

catheter, and then on the vessel borders [12]) and IVUS data sets (using the

optimal surface detection graph search approach developed by Li [13] and the

cost function described by Olszewski in [14],[8]).

• Fusion of angiograms with the IVUS images, by way of the techniques described

in [5], to produce both VRML scenes and structured grid meshes suitable for

downstream processing (e.g., computation of morphologic and hemodynamic

features).

• Computation of morphologic indices to describe the vessel and the plaque struc-

tures in 3 dimensions, described by Medina in [15],[16],[17].

Newer angiography systems (all those used in this study) use a more modern �at

panel image intensi�er grid, which requires no dewarping. Pixel spacing values are
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computed from �ducial points supplied in the image.

A new cost function was developed by this author [18] to better cope with the

IVUS data used in this study (the previous cost function was developed for 40 MHz

catheters supplied by Boston Scienti�c; this study relied upon 20 MHz catheters

supplied by Volcano Corp.).

1.3 Aims

The aims of this thesis were 5-fold:

1. Develop and validate a method of compensating for rotational motion of the

catheter within the vessel and its e�ect upon the 3-D orientation of the recon-

struction. (Section 3.2)

2. Develop and validate a method of registering the reconstructed vessels that

permits identi�cation of a point-to-point correspondence on all quantitative

indices. (Section 3.1)

3. Successfully reconstruct, register, and analyze image sets for each of as many

patients as possible (not all can be included due to errors at acquisition time in

some patients) for analysis. (Chapters 2, 3, 4)

4. Identify statistically signi�cant indices in the data suitable for use as features

in a classi�er. (Section 5.2)

5. Construct and assess performance of a classi�cation system that can draw useful

conclusions about the 1-year progression of the arterial pathology in a patient

not used in the training set. (Section 5.3)

1.3.1 New work supporting aims

Computational �uid dynamic (CFD) analysis provides a powerful tool for the anal-

ysis of atherosclerotic plaque development in the coronary artery in vivo by allowing



www.manaraa.com

5

correlation of plaque development over time with vessel wall shear stress (WSS), open-

ing the door for prediction of disease progression at speci�c sites within the vessel, as

anticipated in [8].

Most existing work on the e�ects of WSS on plaque development in the coronary

artery either omits the e�ects of bifurcations entirely ([6],[7],[19],[20],[21],[8],[22]) or

uses an overly simplistic model of them ([23],[24]). (Soulis [23] bases the model purely

on angiograms. While this captures much of the important information about the

bifurcations, it omits much of the important morphological detail available through

IVUS. Samady [24] is much more thorough, though the details of their method for

attaching the branches is omitted from their publication.)

The dearth of existing publications treating coronary bifurcations in WSS studies

owes to the di�culty of segmenting branches in IVUS: coronary branches are spatially

small, often appearing in only 3 or 4 frames during a pullback (assuming the frames

are sampled on the ECG R-wave, the branch would appear in 3-4 successive R-

peak frames, corresponding to an axially-represented diameter of roughly 2 mm for a

0.5 mm/s pullback speed). If the trajectory of the branch leads away from the main

vessel, they rapidly escape from the �eld of view (typically about 5 mm radially). If

the ECG signal during the pullback was imperfect, proper segmentation can further

be complicated by spatial displacement of the branch from one gated frame to the

next. These factors limit the performance of most conventional IVUS segmentation

methods.

In chapter 2 we outline a novel method for identifying and modeling the bifurca-

tions and incorporating them into the mesh used for WSS analysis. This work was

previously published in [25], but is reprinted here because it is comparatively new, it

is essential to much of the subsequent work described in this study, and the method

for mesh construction changed after [25] was submitted for publication.
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1.4 Analysis Pipeline Description

Figure 1.1 depicts the full array of tasks required to fully analyze a patient's

data for use in this study. Blue blocks indicate tasks that were fully developed by

prior authors, and which were performed in this study by software that was already

written, without modi�cation. Green blocks indicate tasks that had been previously

developed, but for which substantial modi�cations were made to the software used

to perform the task, in order to accommodate substantial changes to the task itself

or the work�ow in general. Red blocks re�ect wholly new work. The majority of this

paper will be devoted to covering these blocks. Demographic and biomarker data are

depicted as a yellow ellipse, re�ecting the fact that they are slurped into the database

described in section 4.1, but otherwise used as-is.

The �rst step is to import the angio and IVUS data. For the IVUS data, the

goal is to import the entire pullback. For the series of acquisition systems used in

this study, the data comes in the form of a DICOM �le containing the IVUS data,

and a black-box �le containing the radio frequency (RF) data from the ultrasound.

This second �le is used to retrieve the timestamps at which the acquisition system

detected r-wave peaks in the ECG of the patient during acquisition. The import tool

uses known information about the DICOM frame-rate, combined with the timestamps

in the RF data �le, to attempt to locate all frames corresponding to r-wave peaks.

This subset of frames are then imported into our system, along with the maximum

number of trailing frames that can be taken from between all pairs of r-wave peaks

� in theory, chronicling the full cardiac cycle for the course of the entire pullback,

leaving the door open to 4-D analysis in the future.

The 3-D reconstruction method was developed with true biplane x-ray angiogra-

phy in mind. The current data set was not collected with true biplane angiography,

due to a lack of the required equipment at the hospital where the data was collected.

To simulate the geometry of biplane angiography, at import time a pair of projections
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Figure 1.1: Data processing �owchart. Red blocks are new work, blue blocks are
untouched preexisting work, green are old software that was extensively modi�ed.
Dotted lines indicate alternative paths.

Import IVUS from
DICOM

Segment/trace IVUS
borders

Identify branches and
exclusion regions

Perform VH analysis

Import angiograms
from DICOM

Segment angiograms
Identify branches in

angiograms

Perform 3-D
reconstruction (with
detwisting if angio
branches used)

Register the baseline
and followup pullbacks

Compute FE mesh of
branches + vessel,
perform CFD

Compute indices Perform feature
selection

Demographic +
biomarker data

Train/test classi�er
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that were as close as possible to 90 degrees apart was identi�ed. For the reconstruc-

tion to be feasible, the distance between the projections must be between 60 and 120

degrees. Thus at the hospital, the physician injects the patient with contrast dye,

collects the images from 1 projection, then rotates the beam source about the gantry,

and repeats the process, injecting a new dose of contrast and collecting another set

of images.

A single cardiac cycle is imported in the case of the angiograms. The objective is to

begin the import at an r-wave peak where the vessel lumen is �ush with contrast dye,

but the catheter is still visible as well. If successful, this means a) the angiograms

are synchronized to the IVUS in terms of the position in the cardiac cycle and b)

the segmentation of the angiogram will be trivial, as 2-D dynamic programming is

extremely successful in segmenting the catheter and vessel borders in these cases,

requiring no manual correction if both are clearly visible.

The IVUS is automatically segmented using an application developed by this

group prior to the current generation of the project, using a cost function published

in [18]. The segmentation always requires manual correction, and a team of cardiology

residents was employed to perform the manual tracing to bring the segmented borders

up to an acceptable standard for publication. Only the endiastolic phase (the subset

of frames corresponding to the r-wave peaks) is segmented.

Figure 1.2 illustrates the anatomy from the point of view of the IVUS segmenta-

tion. The inner border that gets segmented represents the lumen/intima boundary,

where the intima is the innermost layer of cells of the vessel wall (1 cell thick), and the

lumen is the interior of the vessel where the blood �ows. The outer border represents

the media/adventitia interface, where the media is the vessel smooth muscle, and the

adventitia is the surrounding layer of connective tissue. In a healthy vessel, there is

no plaque; when plaque is present, the segmentation includes it in the media region.

The angiograms are automatically segmented using an application developed by
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Figure 1.2: Explanation of vessel anatomy from the point of view of IVUS.

this group in prior years. If the lumen and the catheter are clearly visible, no manual

correction is required. If either is missing, it must be manually traced, at times by

estimating from watching the video of the image loop from the raw DICOM.

During the 3-D reconstruction, the borders are sampled at 72 points per contour,

where a contour refers to the border from 1 frame of the IVUS data set. Thus,

throughout the rest of this paper, but particularly in section 4.2, 72 wedges are

referenced. Where this occurs, a wedge corresponds to all data gleaned from the

portion of the vessel residing between a pair of border points in the 3-D reconstruction

in a given frame; it is called a wedge because when viewed as subdivisions taken along

the perimeter of the border, extending from the edge to the center, they have a wedge

shape.

From this point, the VH procedure is described in section 4.2.1.2, the bifurcation

modeling and �nite element (FE) meshing in chapter 2, the registration in section

3.1, the angiogram branch identi�cation and its impact upon the 3-D reconstruction

in section 3.2, and the feature selection and classi�er in chapter 5.

1.5 Patient Data Description

The data used in this study was taken from the HEAVEN study [26]. 89 patients

were originally enrolled in the HEAVEN study; all signed statements of informed
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consent. Because the objective of the study was to identify clinically signi�cant

features before the onset of acute symptoms, the study was restricted to patients

with stable angina.

Of the 89 enrolled, we received data for 67 patients; of those, we received only

partial data for 22, yielding 45 patients for whom we received complete baseline and

followup data sets. Repeated e�orts were made to secure the missing pieces from the

collaborating physician. Of the 45 for which complete data were received, one was

excluded because there was no catheter visible in any of the angiographic projections,

and therefore there was no way to plausibly localize the 3-D reconstruction. In 2 of the

cases, there was no meaningful overlap between the baseline and followup portions of

the data, making the type of analysis performed in this study impossible. A further

10 patients had gating issues that excluded them. This yielded a �nal total of 32

patients that we were able to include in the study for analysis.

The pullbacks were gated against the R-peaks of the ECG, which correspond to

the end-diastolic phase of the cardiac cycle. With the Volcano IVUS acquisition

system used in this study, each time the system detects an R-peak it stores a time

stamp in the �le that contains the raw RF feed from the ultrasound; this can then

be correlated with the DICOM B-mode video feed to select phase-stationary image

frames with which to compose an image volume.

If the patient's heartbeat was su�ciently erratic during acquisition, or if the ECG

signal was merely noisy (e.g., due to a bad connection/cable), these timestamps may

be incorrect, or they may be too inconsistent for a constant slice thickness to be

assumed, and saw-tooth artifacts may be introduced to the resultant image volume.

There is active research into localizing the end-diastolic phase from the images them-

selves as described by [27],[28]. The method of [27], as adapted by us, is described

below in section 1.5.1; we considered the method to be e�ective, however, concerns

about the availability of VH led us to omit those patients in spite of the improved
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gating.

1.5.1 Optical Gating

Gatta's technique [27] of using motion blur is simple, but e�ective. The equation

as described in Gatta's paper is reprinted in equation 1.1; our adapted version is shown

in equation 1.2. B(I) refers to the blurring value as a function of image intensity. E

refers to the expectation. r is the radial coordinate and θ the angular coordinate, in

a log-polar representation of the image data. δ refers to the gradient, in the case of

equation 1.1, the change in intensity taken with respect to change in radius.

In the case of our version, C(I) refers to the centroid � our version seeks out the

rotational information, by tracking the centroid of the image intensity, and using only

the θ component thereof, rather than tracking vertical shift in the frame; we found

that on the data sets in question this provided pullbacks that were smoother and

more consistent.

The output of both versions is subsequently processed with a high-pass in�nite

impulse response (IIR) Butterworth �lter. We stuck with the example provided in

[27], after experimenting with a few adjustments. The �lter has 10 poles, with fc =

0.5, and fs set to the frame rate of the IVUS pullback.

Figures 1.3a and 1.3b illustrate the di�erence for 1 pullback in which the ECG

was particularly bad. The number of frames in the two sequences is approximately

the same; the time past between the �rst and last frame in �gure 1.3a (ECG gated) is

54 seconds; the time past between �rst and last frame in �gure 1.3b is 2 minutes, 41

seconds, indicating a factor of 3 in terms of the amount of distance and time covered

in the same number of frames.

We can see that the pullback �looks� much more correct, in terms of being less

jagged, and following the shape that might be expected of a phase-stationary IVUS

pullback; the di�erence in time covered suggests that the average frame spacing of

approximately 10.9 frames per trigger in the motion blur gated case, versus 3.75
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Figure 1.3: Comparison of motion blur versus ECG gating.

(a) ECG gated sequence

(b) Motion-blur gated sequence

frames per trigger in the ECG gated case. The former would roughly correspond

to a brisk, but not unheard of, resting heart rate of approximately 164 beats per

minute; the latter to a completely impossible 479 beats per minute. While both

almost certainly have spurious gating events, one much more closely maps to the

likely underlying physiological reality.

B(I) = −E(|δI(r, θ)

δr
|) (1.1)

C(I) =

∑
∀r,θ θI(r, θ)∑
∀r,θ I(r, θ)

(1.2)
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1.6 Similar Work

The closest existing work to the current study available in the literature was per-

formed by Samady [24], albeit in a more limited scope. They demonstrate a positive

correlation between change in plaque burden and low WSS and a negative correlation

between change in plaque burden and high WSS (P < 0.001). Moreover, they showed

that the plaque composition as depicted by Volcano's VH algorithm moves towards

a considerably greater fraction of necrotic core in the high WSS patients. This was

computed over a 6 month window for baseline/followup study.

Our work looks at a one year window, and attempts to take a much more general

view of the pathology. The principal improvement that our work brings to the table

is the development of a classi�er that predicts the plaque evolution in a patient at a

speci�c location based upon the morphologic, VH, and hemodynamic indices, as well

as serum biomarkers and patient demographics.
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CHAPTER 2
BIFURCATION MODELING

Bifurcations are used as the landmarks in the registration described in chapter 3.

As such they are indispensable to the rest of the work presented here. They are also

important for the computation of the wall shear stress terms used in training and

evaluating the classi�er in chapter 5.

An approach to automatically segmenting the branches using region growing tech-

niques was explored; however, it was concluded that the nature of coronary bifurca-

tions in IVUS makes them poorly suited to automated segmentation: they are small,

often appearing in only 3 or 4 frames during a pullback (assuming the frames are sam-

pled on the ECG R-wave, the branch would appear in 3-4 successive R-peak frames,

corresponding to an axially-represented diameter of roughly 2 mm for a 0.5 mm/s

pullback speed). If the trajectory of the branch leads away from the main vessel,

they rapidly escape from the �eld of view (typically about 5 mm).

Moreover, the anisotropic nature of IVUS means that branches that lie normal

to the main vessel in the image will be represented by an extremely small number of

voxels, providing too little information for a reliable segmentation. The automated

segmentation yielded segmented regions that could have been used as registration

landmarks, but would have been wholly unsuitable for CFD modeling. Because we

are not presently investigating the properties of the branches themselves, a decision

was made to model them with a cylindrical shape that can be guaranteed to be

suitable for CFD analysis; this method is presented here.

2.1 Methods

To facilitate robust modeling of the bifurcating vascular segments, we have devel-

oped a hybrid user-guided approach to branch identi�cation (automatic segmentation

from few control points) and generalized-cylinder representation. Segmentation of the

main vessel (both lumen-intima surface and media-adventitia surface) is performed
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prior to the branch marking, using procedures discussed in [8] and [18]. This main-

tains accuracy in the main vessel, while permitting analysis of the newly modeled

branches' impact upon �ow conditions in the vessel.

The method for marking the branches can be summarized as follows: a user

indicates the approximate trajectory of the bifurcation by placing control points for

a B-spline along the branch. An automated segmentation is computed in 2-D at each

control point normal to the curve computed from said points, and the diameter at that

location is estimated, based on the assumption that the segmented region through

which the curve passes corresponds to the branch. The control points are adjusted

based upon the automated segmentation, yielding a curved surface di�eomorphic to

a cylinder. The user can then re�ne the diameter and the position if the algorithm

failed.

The entire process takes no more than 5 minutes; less than a minute for the

automated estimate, and perhaps another 2 or 3 if signi�cant adjustment is required

or there's some ambiguity making the manual adjustment di�cult. A more detailed

description follows, and a screenshot of the interface is shown in �gure 2.1. The yellow

dot is the proximal seed point of the branch, and the two white dots are each control

points for the spline curve; the cyan border re�ects the current position of the branch.

1. A branch starting point (corresponding to the vessel branch junction), a distal

branch point, and one or more intermediate control points are interactively

identi�ed by the user.

2. A uniform cubic B-spline is computed over the range of identi�ed points to yield

a 3-D space curve that follows the branch's trajectory.

3. For each control point, the image is resampled at the nearest location on the

spline curve, such that a 2-D plane normal to the spline curve is produced, using

linear interpolation (Fig. 2.2a).
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Figure 2.1: Interface for manual re�nement in branch capture program.

4. Mean-shift segmentation [29] is performed on the 2-D normal plane (Fig. 2.2b).

5. The area of the branch region identi�ed in the segmentation and the �rst order

image moments are used to compute the radius and centroid of the branch at

the position of the control point.

6. The control point positions are adjusted to match the computed centroid points

and the spline is recomputed.

7. A mesh is constructed around the spline with a cylindrical shape, parallel to

the spline at each position along the curve, using the radius computed from the

2-D segmentation.

8. The branch radius is manually adjusted, if necessary, using the mouse wheel.

9. The trajectory of the branch is manually adjusted, if necessary, by dragging the

control points. No new control points may be added, nor existing ones removed,

once the automated procedure has run.
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Figure 2.2: Output of 2-D mean-shift segmentation used to estimate branch diameter.

(a) Raw 2-D plane as resampled from the
initial control-point based spline.

(b) Same 2-D plane with the mean-shift
segmentation output overlaid.

2.1.1 Trajectory Estimation

B-splines [30] are a well known and established method for curve �tting and

interpolation, de�ned as piecewise polynomials, such that each disjoint piece is a

smooth function on the interval de�ned, and the spline as a whole is generally C2

smooth (or twice di�erentiable) where the pieces meet.

We have employed a generic uniform cubic B-spline blending function de�ned as

a 4×4 matrix, utilizing user-de�ned control points as input.

2.1.2 Diameter Estimation

Using the spline curve, the torsion is computed along with the Frenet frame at each

point along the spline [5]. This information is used to compute a 2-D image plane,

P (u, v), normal to the spline at each point. The u coordinate is resampled along the

binormal, and the v coordinate is resampled along the normal. This guarantees that

the 2-D image plane is perfectly aligned with our trajectory estimation, and thus well
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Figure 2.3: Branch junctions, after di�erent merging procedures.

(a) Branch/artery junction with naive triangle
stripping.

(b) Junction as constructed using Nef polyhe-
dra.

(c) Nef junction after Delaunay re�nement.

suited for estimating the diameter (Fig. 2.2a).

The diameter estimation is performed using a 2-D segmentation in the plane

sampled from the spline. Prior to segmentation, the entire data set is smoothed with

a 3×3×3 spherical kernel. The smoothed image is then sampled at the nearest spline

point to each control point along the spline, in a plane normal to the spline. Because

the z axis has much lower resolution than the x and y (for the data studied, the z

resolution is on the order of 0.5 mm/voxel, exactly matching this value at 60 beats

per minute (bpm), whereas the x and y directions are 0.026 mm/voxel), we must
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interpolate along the z axis in order to achieve an isotropic result.

Equation (2.1) shows the bi-linear interpolation function used; a is the fraction

portion of the �oating point representation of z, and is therefore a measure of how

far between two points on the z axis the current f(u, v) is. In equation (2.2), f0

represents the top left corner of the projection plane, as determined by measuring the

distance to the edges of the 3-D volume along N̂ and B̂.

P (u, v) = (1− a)I(fx, fy, fz) + aI(fx, fy, fz + 1) (2.1)

f(u, v) = f0 + uN̂ + vB̂ (2.2)

The segmentation method is the synergistic approach described in [29], which

combines the recursive mean-shift based density estimator described by [31] with a

con�dence map computed using the edge detection model described by [32]. The

mean-shift procedure, as implemented (the reference implementation published by

the authors of [29], [32], and [31] was used in this study), treats the pixel intensity

values and the two spatial dimensions as its feature space, yielding a 3-D e�ective

space for the clustering. The con�dence map is computed from the image gradients

computed at each pixel by examining the orientation of the gradient in the context

of its neighbors.

The gradient strength is combined with the con�dence measure computed from the

gradient orientations into a weighting, and this weighting steers the fusing of modes

computed in the mean-shift procedure into regions de�ned in the �nal segmentation,

seen in �g. 2.2b. The implementation used has a small number of parameters that

can be set by the user. These are: edge detection kernel size (set to 2), minimum

region size (set to 20 pixels), spatial bandwidth of the segmentation, which de�nes

the search window during the mean-shift (set to 7), and the color bandwidth, which
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de�nes the range of gray levels to be considered during the procedure. This last value

is initialized to a default value of 20, and then recursively reduced by 2 if the area

identi�ed as the branch occupies more than 40% of the total area of the resampled

plane, until a result that takes up less than 40% of the input plane is found.

This last step prevents an overzealous segmentation from always slurping up the

entire input plane, but it also means that if the search area is too small, it may fail

to converge.

The area of the branch is computed by summing the pixels matching the segmen-

tation label at the control point, and the radius is estimated by assuming a circular

cylindrical shape as given in eq. (2.3)

r =

√√√√∑
u,v

T (u, v)

π
, (2.3)

where T (u, v) is a threshold function de�ned in Eq. (2.4), L(u, v) represents the

segmentation label, and u and v are the transposed coordinates in the 2-D normal

plane.

T (u, v) =


1 if L(u, v) = L(useed, vseed) ,

0 else

(2.4)

2.1.3 Mesh Merging

We initially developed an approach to mesh merging that involved deleting the

overlapping points from the respective surfaces (e.g., the main vessel and the branch),

and then using a plane �tted to the junction with least-squares estimation to triangle-

strip the junction. The result of this procedure is depicted in �g. 2.3a. This proved
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inadequate and problematic: the junction was too abrupt for truly robust CFD analy-

sis, as abrupt junctions result in pockets of turbulence unrepresentative of the under-

lying reality. Moreover, because the two meshes were invariably sampled at di�erent

resolutions, constructing a junction that was manifold (e.g., no holes, and no self-

intersecting triangles) was extremely di�cult to do consistently.

A modi�ed approach making extensive use of the CGAL (Computational Ge-

ometry Algorithms Library) library [33] was devised, with a two step process that

eliminates the topological inconsistencies that stymied the initial e�ort. The list of

steps performed for the mesh merging is outlined below, and details follow after.

1. Branch mesh points are transformed into physical coordinate space using the

intermediate Frenet-Serret geometry model derived from code based upon [5].

2. 10-diameter �ow extensions and end-caps are added to each of the branches and

to the main vessel. The �ow extensions are required to ensure fully developed

�ow in the CFD analysis; the end-caps are required to make the surface manifold

for the remeshing procedure that follows.

3. The branches are merged with the vessel into a single surface using CGAL's

[33] NEF_Polyhedron class, based on Walter Nef's [34] work with boolean half-

spaces.

4. The resulting surface is remeshed using a Delaunay re�nement procedure de-

scribed in [35].

5. The end-caps are removed from the surface. The details of this procedure are

described in algorithm 1.

6. The �nal surface is topologically su�cient for use in the remainder of the CFD

pipeline, as described in section 4.2.1.3.
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First, all surfaces, including the main vessel, and each of the branches, is extended

with 10-diameter �ow extensions (branches are extended at outlets only because the

branch inlets will be merged into the �nal surface). It is standard practice in CFD

analysis to add �ow extensions to guarantee fully developed, convergent behavior

within the region being modeled. 10-diameters is a commonly used length that is

widely agreed to be su�cient, and is the convention that was used in our case. Prior

to remeshing, each of the surfaces has a form known as a structured grid, which means

that a surface consists of a �nite number of contours and points per contour. (In the

case of our work, the number of points per contour was always equal to 72, but that

is by convention and not by necessity).

To add the extensions, a normal vector is taken from the last pair of points in

the centerline of each sub-surface. This normal vector is then rescaled to be equal

in length to the diameter at the outlet in question. Then 11 additional contours are

added, each displaced from the last contour at the outlet by a multiple of the rescaled

vector. The 11th contour is added to make it easy to remove the endcaps later while

still keeping a 10 diameter extension.

End caps are added by adding a centerline point coplanar to the last contour,

which then forms 72 triangles in concert with the 72 points of the last contour.

During this and the last step, 2 data structures are created and cached to permit the

removal of the end caps after remeshing: �rst, a circumscribing cuboid is constructed

around each �ow extension, and then an oriented plane is stored at the position of

the 10th diameter extension. A coordinate transform object is also created, which

shifts the axes of the mesh to where the centerline of the �ow extension is coincident

with the x-axis, thereby permitting the cuboid to be computed as an axis-aligned

bounding box.

After end caps and �ow extensions are added, the meshes are merged, using

CGAL's Nef polyhedron class, which builds upon Walter Nef's [34] work on Boolean
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halfspaces, and was fully developed for work with 3-D polyhedral meshes by Hachen-

berger and Kettner [36]. The algorithm performs a logical union of the volume of the

main vessel mesh with those of the bifurcations, yielding a closed, manifold surface

free of intersections (though neither smoothness nor triangle quality is guaranteed).

The result of this procedure can be seen in �g. 2.3b.

This initial surface is then used to initialize a second procedure, described in

[35]. The technique in question uses an iterative Delaunay re�nement driven by an

implicit surface de�nition to produce a smooth mesh whose vertices have valence of

6 wherever possible, guaranteeing a well-behaved topology suitable for CFD analysis.

Because the branched coronary artery cannot be de�ned analytically, we construct

the implicit surface de�nition around iterative intersection of axis aligned bounding

boxes, where the bounding boxes are constructed over various subsets of points taken

from the initializing polyhedron produced in the �rst step. The �nal output of the

smoothed, resampled junction can be seen in �g. 2.3c.

Before the �nal surface is written out, the end caps are removed, so that the

location of inlets and outlets is unambiguous to the downstream pieces of the pipeline

that dispatch the CFD solver. The stored 3-D coordinate transformation is used to

map each point in the surface into an alternate frame in which each of the bounding

cuboids lies along the x-axis, centered at the origin. This in turn makes it trivial to

determine if a given point a) lies within this cuboid and b) lies on the side of the

plane where the end cap is located, or the side where the rest of the �ow extension

is located. If the point lies on the negative side of the plane, but within the cuboid,

it, and any triangles in which it is contained, are removed from the surface. This

procedure is described in algorithm 1; the function MAP () refers to the coordinate

transform mentioned above; AABB refers to the axis aligned circumscribing cuboid

for a given �ow extension, and BELOW () tests to see if a point is on the negative

side of the boundary plane.
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Algorithm 1 Procedure for removing endcaps from triangulated surface mesh.

for all POINT do
for all FLOW_EXTENSION do
MAPPED ⇐MAP (POINT,CENTERLINE(FLOW_EXTENSION))
if MAPPED ∈ AABB(FLOW_EXTENSION) then
if BELOW (MAPPED,BOUNDING_PLANE) then
DELETE(POINT )
NEXT (POINT )

end if
end if

end for
end for

2.2 Validation

Suitability of the method for marking/identifying bifurcations for purposes of

downstream analysis was assessed by comparing two separate users of the software to

each other and to the initial estimate computed algorithmically. While some bifur-

cations are di�cult to mark, the unambiguous cases were typically very close, both

between users and between the users and the automated estimate. Moreover, user

training can further improve the results, as it is possible to make a much more ac-

curate estimate of the branch trajectory once one is familiar with the quirks of the

interface (In particular, setting too many spline control points can result in contorted

trajectories that are very di�cult to straighten. If a bifurcation is roughly normal to

the catheter path within the IVUS �eld of view, the spline should be limited to one

intermediate control point to allow for a straight trajectory to be modeled.).

The quantitative results identi�ed in [25] can be seen in �gure 2.4. The validation

was computed on 9 di�erent bifurcations identi�ed for purposes of assessing the qual-

ity of the method when [25] was originally published. For each of �gures 2.4a-2.4c,

the metric in question is computed on each of the 9 branches. Figure 2.4a computes

the variation in centerline position between 3 expert observers used to trace the bi-

furcations; �gure 2.4b compares the centerline position between the observers and
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the initial raw estimate of the algorithm as described in section 2.1; �gure 2.4c shows

the variation in the radius compared both between tracers and against the raw initial

estimate. The results for each branch are averaged across observers; error bars show

the range of variation in plots 2.4a and 2.4b.

These results are considered good enough, given the intended use of the modeled

bifurcations. The inter-observer positioning error is an indication of signi�cant uncer-

tainties in identifying bifurcations in IVUS; they nonetheless were typically less than

0.5 mm, which indicates a high degree of similarity in trajectory, even if the exact

location varies. Likewise, the variation in radius estimates was typically on the order

of 0.1 mm, which is approximately 5 pixels for the image frames used in this study,

and again a reasonable uncertainty value. The average radius estimate for marked

branches in our dataset is 0.85 mm, which is considerably larger.

Branches 5 and 6 had considerably greater inter-observer variability than the

others, and branch 6 also had by far the greatest automated segmentation error.

These branches were the most di�cult to segment, because they had trajectories that

were almost normal to the main vessel. From an automated segmentation standpoint,

this is extremely di�cult because it means that the size of the image plane resampled

(section 2.1.2) is extremely small; more signi�cantly, the anisotropic nature of IVUS

comes heavily into play: a bad automated segmentation can easily cause the trajectory

estimate to be o� by a few millimeters. Fortunately, this is a rare occurrence.

Figure 2.5d illustrates how the WSS in a single vessel changes from the inclusion

of a single branch. Figure 2.5b shows the WSS with the branch omitted; �gure 2.5c

shows the WSS with the branch included (the bright dot at the branch's location is

not actually WSS, but rather an annotation to make the site of the branch visually

clear). Figure 2.5a shows the surface the WSS runs in �gure 2.5 were based on. The

drop in WSS after the inclusion of the branch (�g 2.5d is unambiguous, and makes

the case that the e�ects of the branches are important to consider in any evaluation
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of coronary WSS values.
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Figure 2.4: Positioning and radius error in branch identi�cation.
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(b) Segmentation error
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(c) Radius error

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9

m
ill

im
e

te
rs

 

Interobserver

Raw



www.manaraa.com

28

Figure 2.5: WSS for a right coronary artery, shown with and without considering the
�ow e�ect of a branching vessel. Notice reduced WSS (light blue in 2.5d) at the distal
end of the vessel. Arrow depicts the direction of blood �ow.

(a) Vessel model with branch shown attached.
(b) Computed WSS without consideration of
branches.

(c) Computed WSS with a branch attached.
Bright red area is the branch outlet, branch
not shown.

(d) Di�erence map showing change in WSS
between branched and unbranched. Positive
values indicate higher WSS with branch, neg-
ative values without.
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CHAPTER 3
REGISTRATION

The registration portion of the analysis consists of two parts: the most obvious and

important part consists of mapping the baseline and followup portions of the data

into a common space so that meaningful comparisons can be made between given

regions of the vessel. Our method for this portion of the registration is detailed in

section 3.1. The method developed uses a piecewise transform to scale the coordinates

along the z-axis while applying a B-spline generated rotational shift to compensate

for rotational variation between the pullbacks.

Were the 3-D modeling not a part of this project � if the analysis was limited to

virtual histology and measures of plaque thickness � this would be su�cient. Section

3.2, and in particular section 3.2.1, detail a nondeterministic variation in the catheter

orientation that sometimes occurs during a pullback. The phantom study was per-

formed to investigate the nature of the twisting, and to see if analytical model could

be developed, permitting it to be corrected for automatically. This was found not to

be the case.

To deal with this e�ect, a method was developed that uses the appearance of

branches in the angiograms as �ducials onto which the IVUS branches can be mapped.

If the branches can be clearly identi�ed in the IVUS, and in both planes of the

angiograms, locations in 3-D where the vessel has twisted beyond what should be

expected from the model of the catheter's torsion can be detected and unwound.

The method we developed to address this problem required branches to be clearly

visible in the angiograms to be useful. Because this was seldom the case in this data

set, we performed an initial validation study of the method on a minority of patients

for whom branches were visible in the x-ray projections, but did not employ it in the

creation of the 3-D reconstructions used for the analysis discussed in chapters 4 and

5. We present the method anyway as a possible means of improving future studies,
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provided the inclusion of branches as �ducial points is addressed at acquisition time

for the angiograms.

3.1 Baseline/Followup Registration

3.1.1 Methods

If the methods described in section 3.2 are essential to ensuring accurate wall shear

stress values and 3-D morphologic indices, the actual registration of the baseline and

followup pullbacks is in many ways much simpler: because the indices are all sampled

in the IVUS space of cylindrical coordinates, corresponding to an axial (z) value and

an angular (θ) value, a rubber sheet transform similar to an a�ne transform in the

cylindrical IVUS space is su�cient to align the indices we compute for the purpose

of running a classi�er on the data.

However, if there exists more than 1 branch, a single a�ne transform is inadequate

to represent multiple directions of rotational distortion, and attempting to construct

one piecewise presents a signi�cant problem in the form of dependencies between the

pieces: the edge of one must align with the middle of the next and so on. (Audette

et al. [37] demonstrated the robustness of a piecewise a�ne technique in consid-

erably more complex image registrations involving otolaryngologic surgery with CT

guidance; however, they stitched chunks of image together end-to-end, and had no

overlap between pieces of transforms.) Thus the transformation has been broken into

two components, computed separately: an axial scaling transform, computed along

the length of the pullback, with a scaling term computed separately for each pair of

landmarks, and a rotational transform, computed using a Catmull-Rom B-spline with

a control point set at each pair of landmarks. While thin-plate splines have generally

become the standard technique for image registration in cases like these, the method

used was chosen because it was important to treat rotation and axial scaling sepa-

rately, as one is driven by catheter motion and/or initial position, and the other by

catheter speed.
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Figure 3.1: Before/after for baseline/followup registration.

(a) Tool used to capture landmark correspondence. Green boxes match a branch selected
from the tree control on the left. Red boxes represent all available branches in the opposite
pullback. Software attempts to infer �baseline� and �followup� from the database described
in section 4.1; else the order is arbitrary.

(b) Patient depicted in �gure 3.1a, after registration transform is applied to followup image.
Timestamp information is gone from the lower image because only the portion inside the
�eld of view (outer red ring) is resampled.

For clarity, we have adopted the following convention: lowercase z and θ refer to

the actual coordinates (in the case of equations 3.3 and 3.4, the input and output

values for the mapping), and upper case Z and Θ refer to functions, taking a landmark
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as an argument and returning the corresponding coordinate of that landmark.

At each point, given a pair of input coordinates from the baseline pullback, the

followup equivalents are computed, treating the baseline as the master. Throughout

this section, the abbreviation BL refers to the baseline coordinate space, and the

abbreviation FU refers to the followup coordinate space. LMx and LMx+1 are meant

to describe the previous and next marked corresponding landmarks. The math is

described in equations 3.3 and 3.4. The angular components from the B-spline func-

tion are indexed to the length of the followup pullback, so that for a pair of baseline

coordinates, the equivalent followup pair is found by �rst computing the adjusted

z coordinate, and then retrieving the corresponding θ from an array of values com-

puted from the B-spline, with 1 rotational value computed for each followup frame.

Terms ZBL(LMx) and ZFU(LMx) correspond to the baseline and followup z coordi-

nates respectively of the xth landmark in the registration. Θ() is a function of z,

thus ΘFU(zFU) gets the value of the B-spline interpolation function at the followup

z coordinate zFU .

In every registration, LM0 = (z0,Θ(ZFU(LM1))), for every pullback, where z0 is

the frame number where the overlap was identi�ed to begin, and Θ(ZFU(LM1)) is

the angular correction for the �rst matching pair of branches. This ensures that the

registration examines only regions of the pullbacks that overlap, and it gives the θ

coordinate a plausible initialization � the �rst matched pair of branches is the earliest

information available regarding the angular error between the two pullbacks.
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δBL(x) = ZBL(LMx+1)− ZBL(LMx) (3.1)

δFU(x) = ZFU(LMx+1)− ZFU(LMx) (3.2)

zFU = (zBL − ZBL(LMx))×
δFU(x)

δBL(x)
+ ZFU(LMx) (3.3)

θFU = θBL + Θ(zFU) (3.4)

The control points for the B-spline are selected by �rst �nding the centroid of

the axis-aligned bounding box surrounding each marked branch, then computing the

angle between the centroids (followup is subtracted from baseline). From this angle, a

control point value is selected based on the criteria of minimizing the change in angle

from the previous control point (i.e. given the circular wrapping nature of angles, if

4 di�erent representations of an angle all transform the followup branch centroid to

the baseline's position, the correct angle should be the one that requires the minimal

amount of movement from the previous control point location). The procedure is

described in detail in algorithm 2.

The values BL_CENTROID and FU_CENTROID refer respectively to the

matched baseline and followup centroid positions for the branch being used as a

landmark.

The software tool used for this step (�gure 3.1a) builds upon the same framework

as the tool used for identifying the branches in IVUS. For the moment, only bifurca-

tions are used as anchors, because they provide the most information and are also the

only landmarks that provide two forms of localization (other landmarks are identi�ed

in terms of the rough location by the user, but the identi�cation is coarser. The

door is open to the inclusion of others should they be necessary, but they are for now

identi�ed only for other purposes, i.e. excluding stents and heavy calci�cations from

analysis � described in section 5.1.1 � or compensating for a stuck catheter). Upon
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Algorithm 2 Procedure for identifying control points for registration spline.

CTRLPTS ⇐ ∅
for all MARKED_PAIR do
θBL ⇐ ATAN2(BL_CENTROIDY , BL_CENTROIDX)
θFU ⇐ ATAN2(FU_CENTROIDY , FU_CENTROIDX)
∆0 ⇐ θBL − θFU
∆1 ⇐ ∆0 + 360
∆2 ⇐ ∆0 − 360
Θ(LMNext)⇐MIN(∀(∆−ΘLast(CTRLPTS)))
Z(LMNext)⇐ FU_CENTROIDZ

APPEND(CTRLPTS, LMNext)
end for

load, a list of branches for both baseline and followup is displayed. When the user

selects one, the program navigates to that branch, and then highlights all branches

in the opposite pullback as cursors which can be selected to indicate a match.

Once a su�cient number of overlapping branches have been marked, the corre-

spondences are committed to the relational database. (If 2 branches overlap somewhat

along the z-axis, it's unnecessary to mark both.) Figure 3.1b shows the appearance of

the image after the registration transform is applied, in contrast to 3.1a, which shows

the interface pre-transformation. The correspondence is excellent, and the di�erences

remaining owe, presumably, primarily to actual physiological di�erences of the sort

we seek to measure.

The end result is that for a given location in the baseline image set, the quanti-

tative indices computed (morphologic, virtual histology, wall shear stress) can all be

retrieved trivially from the followup data set, making it possible to do detailed data

mining, and subsequently build the aforementioned classi�er.

3.1.2 Experimental Methods

This method was validated across all data sets used in the study, as described in

section 1.5.

Figures 3.1a, 3.1b provide a visual, qualitative assessment of the e�cacy of the
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registration method described in section 3.1.1. Each pair of pullbacks was visually

assessed to con�rm that the method was working correctly; indeed, during the de-

velopment of the software this provided the essential clues when things went awry,

most often because the incorrect rotational direction was selected at some point,

causing the registration to introduce a full, 360-degree twist rather than the correct

adjustment.

However, because this registration is performed entirely within the IVUS space, it

makes sense that it should be evaluated principally in this space as well. The visual

examination was performed by examining the image warping and border displacement

that was performed with the computed transformation, and the ultimate metrics of

the accuracy are built upon a comparison of the IVUS borders between baseline and

followup post registration. Zero error can reasonably be considered impossible, even

with a perfect registration, as a result of the fact that the pullbacks are one year

apart, and therefore some physiological change is inevitable � however, we seek to

demonstrate a successful minimization of that error.

Three assessments of the di�erence are taken in section 3.1.3; ZBL and θBL in the

descriptions below correspond to their de�nitions in equations 3.3, 3.4:

1. The registered di�erence. (Eq. 3.5)

2. The unregistered di�erence, beginning at the �rst frame, and continuing until

one of the pullbacks ends. (Eq. 3.6)

3. The di�erence taken after registering only along the z-axis, illustrating the por-

tion of the error that results from rotational misalignment alone. (Eq. 3.7)
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Table 3.1: Registration error statistics

(a) Lumen-lamina border (mm)

Comparison Max Mean MSE SD
Registered 2.8753 -0.0081 0.1830 0.4278
Unregistered 3.9531 0.0388 0.7696 0.8764
Z-axis only 3.4883 -0.0106 0.6558 0.8097

(b) Media-adventitia border (mm)

Comparison Max Mean MSE SD
Registered 2.9063 -0.0238 0.1881 0.4330
Unregistered 3.4716 0.0835 0.7869 0.8832
Z-axis only 3.4338 -0.0215 0.6651 0.8153

∆ = fBL(zBL, θBL)− fFU(zFU , θFU) (3.5)

∆ = fBL(zFU , θFU)− fFU(zFU , θFU),∀zFU < Length(BL) (3.6)

∆ = fBL(zBL, θFU)− fFU(zFU , θFU) (3.7)

For each of these three categories of comparison, we have tabulated the max,

mean, and mean squared error, as well as the standard deviation, and plotted density

curves for all 3 categories of results as well.

3.1.3 Results

Figures 3.2 and 3.3 depict density curves over all the data sets for di�erence values

described in equations 3.5-3.7 in the borders for registered, unregistered, and z-axis-

only registered pairs of pullbacks respectively. Tables 3.1a and 3.1b depict mean,

max, MSE, and SD values for the same in tabular format.

Figures 3.2 and 3.3 depict Gaussian kernel density estimates computed using the

R software package. The bandwidth value depicted in the plot is computed by the
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Figure 3.2: Density curves for lumen-lamina border registration error.
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kernel density estimator, based on the standard deviation of the input data, and is

used for smoothing the output curve. The formula for computing the estimate was

�rst published in [38] as �Silverman's rule of thumb,� and is described in equation 3.8.

SD is standard deviation, IQR is interquartile range, and n is sample size. Given the

density of the points, these curves are functionally equivalent to continuously-valued

histogram plots.

BW = 0.9×min(SD, IQR× 1.34× n−1/5) (3.8)
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Figure 3.3: Density curves for media-adventitia border registration error.
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Figures 3.2 and 3.3, and table 3.1 show quite clearly that the discrepancies between

pullbacks are visibly signi�cantly reduced by the registration. A paired t-test was

performed for all each of registered/unregistered and registered/z-only-registered for

each border. In both cases, the p−value was found to be less than 0.001, indicating the

changes seen are statistically signi�cant. Given the fact that the registered di�erence

re�ects di�erences measured over a year in which disease is expected to evolve, we

consider this registration approach to perform satisfactorily, and to be a success.
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3.2 Catheter Twist Correction

IVUS catheters can be broadly divided into solid-state and rotational-transducer

designs. The rotational design requires a sheath to insulate and stabilize the rotating

core; the solid state transducer does not require the sheath and thus is generally

used without it because of cost savings, and because it makes the assembly narrower.

The rotational design produces a known phase-shift artifact in the presence of friction

points which was examined and discussed in [5]. A twisting artifact previously unseen

in the rotational designs was observed in this study, in which solid-state catheters

were used (�gure 3.4). The twisting is best described as a corkscrew artifact, which

appeared physiologically implausible, given contemporary understanding of plaque

growth and development.

A phantom study (section 3.2.1) con�rmed that this twisting is beyond what a

purely geometric model would predict. This means that what necessarily must be

treated as non-deterministic twisting can occur, which adversely a�ects the accuracy

of the geometric fusion, and subsequently the CFD analysis.

We have undertaken to address this artifact by adjusting the orientation of the

IVUS frames along the reconstructed centerline in accordance with a mapping be-

tween IVUS branch locations and branch locations estimated from the angiograms.

Unfortunately, the branches are seldom visible in the angiograms with su�cient clar-

ity for us to have con�dence in the projected location; thus validation of this work

can be considered cursory at best, and this technique was not employed on the data

that was fed into the classi�cation system of chapter 5.

3.2.1 Phantom Study

After observing the twisting in patient data as shown in �gure 3.4, a phantom

study was undertaken to con�rm the presence of an artifact that could not reasonably

be corrected analytically. The phantoms shown in �gure 3.5a were created to model a

variety curved vessel shapes. One of them was designed as a straight pipe as a control
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Figure 3.4: Plaque thickness projected onto 3-D reconstruction with twisting arti-
fact. Measure of thickness scales from dark blue (very thin) to red (very thick).
Isolated red square near center of the image is the application's cursor for getting
detailed information at a given location; translucent yellow shadow corresponds to
the media/adventitia border.

segment; the others were intended to roughly match the curvature of a real coronary

artery. The �xture depicted in �gure 3.5b was created to add some torsional stress

comparable to the portion of the circulatory system the catheter must pass through

prior to reaching the coronary artery.

There are two alternate paths through which the catheter can be threaded into

the phantom shown: either directly through the length of PVC pipe at the far left

of �gure 3.5b, in which case there is very little bending or torsional stress on the

incipient catheter, or through the clear tygon shown descending through the vertical

length of PVC, which induces much more bending, in theory comparable to what is

present in the aortic arch, and therefore suitable for inducing the twisting observed

in �gure 3.4. The vessel itself was modeled with 1/4 inch diameter weather stripping

purchased at a hardware store, selected for both its diameter, which is comparable

to that of a coronary arterial lumen, and for its distinctive D-shape, which makes it
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Figure 3.5: Phantoms used to verify catheter twisting artifact.

(a) Photo showing all trajectories used in phantom study.

(b) Photo showing phantom apparatus fully assembled.

easy to visually detect any twisting during the pullback.

The plastic enclosure depicted in �gure 3.5b was �lled with water to simulate

blood. After that, the catheter was threaded into the phantom, while the x-ray ma-

chine was used to locate the catheter and the transducer within the phantom. During

this procedure, a continuous feed from the x-ray was shown on the screen. Snapshots

were taken at speci�c locations, for later o�-line analysis. One such snapshot can be
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Figure 3.6: Images from phantom study.

(a) Angiogram of phantom (b) IVUS image of phantom

seen in �gure 3.6a. The catheter is di�cult to see, but is visible as a thin curved

wire, snaking all the way up to the top anchor post. Once the position of the trans-

ducer was set (generally at the furthest point within the phantom that still left the

transducer completely enclosed within the D-shaped weather stripping), an automatic

pullback commenced, with periodic snapshots recorded on the x-ray machine in order

to localize speci�c twisting events within the phantom. An image frame taken from

the IVUS data is depicted in �gure 3.6b. The sharp D-shape of the weather stripping

is clearly visible in this �gure. The catheter is positioned all the way in the tight

notched edge of the tubing in this frame.

The phantom con�rmed the twisting of the catheter during the pullback, and

also that the twisting was not a function of any easily measurable parameter: even

in the phantom with a straight trajectory, a 120 degree twist was observed in the

IVUS image data over the course of the pullback, thus con�rming the need for the

methodology outlined in section 3.2.2.
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3.2.2 Methods

The process of angio-IVUS fusion described in [5] uses a Frenet-Serret model

of the catheter to estimate the position of the IVUS frames relative to each other,

and the torsional motion that takes place between them. This model is described

in detail in [39], and is accurate as long as the catheter behaves in the way that a

rigid model would suggest. Sheathed catheters typically do this reasonably well; the

unsheathed catheters made by Volcano Corp., used in this study, do not. We are

presently unaware of any means of analytically predicting this behavior, and thus we

have explored a method of correcting it through the use of anchors and tie points.

An illustration of the unnatural twisting can be seen in �gure 3.4. The �gure

depicts plaque thickness values, which should be correlated with vessel curvature,

but here take on a spiral shape that suggests the catheter orientation is erroneous.

The only reliably available anchors present in both the angiograms and the IVUS

images are the bifurcations described in section 2. The method used for angiographic

segmentation relies both on contrast dye and on a catheter with high x-ray opacity,

so that traditional dynamic-programming 2 dimensional graph search techniques can

be applied reliably. When the angiogram meets both these criteria, the segmentation

proceeds with minimal error and virtually no need for manual intervention. When

one or the other is lacking, a tedious procedure of observing the video of the raw an-

giogram and then manually inferring the correct positions of the borders and catheter

is required. Such pullbacks are often the ones with the greatest uncertainty with re-

gards to the absolute orientation, thus even in the absence of twisting, this method

should be able to improve the quality of the reconstruction.

Segmenting bifurcations is di�cult because there is no catheter, they are fre-

quently narrow enough to limit the usefulness of the contrast dye, and, more signi�-

cantly, they are often badly occluded in the image by the vessel of interest, or su�er

from foreshortening artifacts due to the fact that the projection planes were chosen
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with respect to the main vessel, not the bifurcations. For this method to be made

useful, the image acquisition protocol would have to stipulate that the projections

used capture a minimal number of usable branches.

�Segmenting� the bifurcations in the angiograms as such is infeasible. We instead

have devised a method that relies upon identifying two points along each bifurcation

in each plane (�proximal� and �distal� respectively), ideally matched in both planes.

To compensate for the inevitable ambiguity of identifying peripheral vessels in an

angiogram, epipolar projection is used to assist in matching points between the two

projections, with the transformation initialized based upon the parameters of the

original vessel segmentation. Figure 3.7 illustrates the interface. Depicted are the

angiograms of one of the patients in the study for whom one of the branches is clearly

visible in both projections. The yellow squares are the cursor used to identify the

branch locations; the yellow lines are the epipolar projection of the cursor from the

other pane, which in this case provide visual reassurance that the same branch is

being marked in both.

Figure 3.7: Software interface used to identify branches in angiograms.
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In this interface, the green lines denote the previously identi�ed borders of the

main vessel. The red line is the segmented catheter path. The red square is the

estimated proximal position of the bifurcation, or the location of the junction based

upon its previously identi�ed location from the IVUS as marked with the method

of section 2, and the yellow square denotes the estimated distal end of the branch.

The software locks the position of the proximal location to the segmented catheter,

whereas the user is free to move the distal point anywhere in the image. The straight

yellow line is the epipolar projection of the distal point from the opposite pane. The

software does not force the user to place the cursor along this line, but merely draws

it as a guide, to provide a valuable clue as to which vessel-like object in the image is

most likely the bifurcation of interest.

Algorithm 3 Procedure for estimating localized twisting from bifurcations.

CTRLPTS ⇐ ∅
for all BRANCH do
Z ⇐ DISTAL_FRAME(BRANCH)
DISTAL_3D ⇐ RECONSTRUCT_PT (DISTAL_2Da, DISTAL_2Db)
DISTAL_V EC ⇐ DISTAL_3D − CATH_PT [Z]
PROJECTIONu ⇐ DISTAL_V EC · SV EC[Z]
PROJECTIONv ⇐ DISTAL_V EC · TV EC[Z]
θangio ⇐ atan2(PROJECTIONv, PROJECTIONu)
NEW_CTRLPTu ⇐ Z
NEW_CTRLPTv ⇐ θIV US − θangio
NEXT (CTRLPTS)⇐ NEW_CTRLPT

end for

Traditionally, the IVUS frames have been oriented along the catheter path ac-

cording only to the Frenet-Serret torsion result as described in [5] and [39]. Once

bifurcations have been identi�ed in the angiograms, however, an additional step is

inserted, prior to the computation of the absolute orientation of the vessel. The

application that is used to perform the 3-D reconstruction is depicted in �gure 3.8;
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Figure 3.8: Application used for 3-D reconstructions. Spline curve for detwisting is
visible towards the bottom of the panel.

the spline curve estimated for reversing the twisting, along with the control points

corresponding to marked branches, is depicted in the lower half of the panel.

First, a list of branches that have been identi�ed in both the IVUS and in the

angiograms is compiled. The procedure described in algorithm 3 is run on the set

of branches to produce a set of control points for a spline curve. This spline curve

de�nes the angular de�ections of each frame along the IVUS pullback that are to be

performed prior to the 3-D reconstruction; a spline curve is used to guarantee smooth

progression of twisting over the course of the pullback that is minimally disruptive to

the ultimate 3-D model.

3.2.3 Experimental Methods

The curvature index is a morphologic parameter de�ned in [17], and reprinted in

equation 3.10, that measures the projection of the curvature of the vessel centerline
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onto the lumen surface at each sampled point in the 3-D reconstruction. Whereas the

point-to-point registration is validated using di�erences in the IVUS borders prior

to 3-D reconstruction, the curvature index provides a unique window into a more

complete picture of the accuracy of registration which takes into account the 3-D

uncertainty we attempt to address in this section.

~T and ~N are the tangent and normal vectors with respect to the surface; κj is

the curvature value at a given frame; κ̄n is the mean curvature taken over a 23 point

window at frame n. The magnitude of κ̄n is multiplied by the cosine of the angle

between the tangent and normal surface vectors to get the curvature index value (κ̇n)

at a given frame.

κ̄n =

∑n+11
j=n−11 κj

23
(3.9)

κ̇n = |κ̄n| ×
~T · ~N
|~T || ~N |

(3.10)

Figure 3.10 illustrates the density function of the curvature index for registered

and unregistered data sets. While the bandwidth is narrowest in the registered case,

the extrema are far further from the center of the distribution. This is because

in cases where uncompensated variation in catheter orientation, or uncertainty in

absolute orientation, the baseline and followup are at times seen to bend in opposite

directions. Nonetheless, the sharpness of the peak can be taken as an indication of

the correctness of the 3-D alignment of a pair of pullbacks.

Any change in the orientation of speci�c IVUS frames will have a signi�cant impact

upon the absolute orientation as computed by the methods of [39]. If the frames are

reoriented correctly, they should improve the accuracy of the �nal result � the goal is

not to change the overall approach, but rather to remove a previously unaccounted

for source of error, and permit the absolute orientation detection algorithm to work
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Figure 3.9: Curvature index error, measured as a function of rotational misalignment.
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Because the reliability weight is based in part on how far out of center the catheter

is in a given frame (and therefore how likely it is that the di�erence angle can be mean-

ingfully computed), it's unlikely that the reliability weight will change signi�cantly.

Rather, if the approach described in section 3.2.2 works correctly, we should expect

that anywhere the reliability weight is reasonably high, the di�erence angle should

be consistent, i.e. there should not be signi�cant �uctuations among di�erence angle

values perceived as reliable.

Because it is closely coupled with the 3-D reconstruction, the curvature index has

limited use in validating the mapping described in section 3.1. However, it provides
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Figure 3.10: Density plot for curvature index error taken over the entire data set.
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a useful metric in assessing the e�ectiveness of the detwisting procedure described in

section 3.2.2. Figure 3.9 illustrates the average di�erence in curvature index, com-

puted over all pullbacks, for a given angle of displacement (e.g., each pullback is

compared to a rotated version of itself over all points). The shape of the curve illus-

trates that the error is strictly a function of rotational misalignment in this limited

case.

Figure 3.10 also shows a plot of curvature index presented in the same way as

�gures 3.2 and 3.3 were in section 3.1.3, with registered versus unregistered versus
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z-only registration over all patients. It is less persuasive than �gures 3.2 and 3.3

because the uncertainties in the 3-D reconstruction and any potential misalignment

directly impact the result seen there.

Di�culty identifying bifurcations in the available angiograms has limited our abil-

ity to employ this technique in this study. However, to illustrate the e�ects of its use,

we have chosen 6 baseline-followup pairs for demonstration. For these 6 pairs, we

have created a table showing each of the absolute orientation and RMS positioning

error from the 3-D reconstruction both with and without the detwisting respectively,

and the mean and standard deviation of the registration error for curvature index for

the pair (tables 3.2a, 3.2b). CI refers to curvature index. RMS error and absolute

rotation are in degrees; CI is unitless. We also plot the density curves for the regis-

tered detwisted curvature index against that of the unregistered, z-only registration,

and registered non-detwisted data for the 6 pair subset in question (�gure 3.11).

Figures 3.12, 3.13 also show the reliability weight and correction angle values

plotted over the entire pullback for both pullbacks for the patient that inspired the

development of this method (see �gure 3.4) for both regular and detwisted versions.

In the course of the reconstruction, the estimated correction angles at each position

along the pullback are averaged with weights corresponding to their reliability weight

value, to determine the �nal global absolute orientation value, depicted as the green

horizontal line on each plot. Reliability weight values are low if the segmentation

borders at a particular location are centered and circular, because at those locations

there is very little to di�erentiate di�erent possible orientations. A reconstruction

can be considered to be of high quality if the estimated correction angle values are

all very similar at all locations where reliability weight is high.

3.2.4 Results

Figure 3.11 shows density curves for the detwisted an nondetwisted subsets used

in this section; it also includes the unregistered versions for comparison, illustrat-
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Table 3.2: Detwisting error statistics.

(a) Detwisted pullbacks.

Patient Study Abs Rot RMSerr CI Mean CI SD

prague17 Baseline 36.69 83.47 -4.25E-04 3.82E-01

Followup -71.23 52.41

prague28 Baseline 64.67 60.42 -3.25E-03 2.25E-01

Followup -71.36 37.42

prague56 Baseline -38.19 74.38 -2.85E-03 1.74E-01

Followup 69.37 43.14

prague69 Baseline 242.4 55.17 -2.42E-03 1.56E-01

Followup 104.3 64.07

prague100 Baseline 178.7 66.89 -1.93E-03 1.39E-01

Followup -15.18 64.55

Prague18 Baseline 95.15 9.656 -1.96E-03 1.33E-01

Followup -74.2 43.77

(b) Non-detwisted pullbacks.

Patient Study Abs Rot RMSerr CI Mean CI SD

prague17 Baseline 34.31 89.71 1.37E-03 3.97E-01

Followup 188 67.71

prague28 Baseline 169.7 68.26 -1.38E-03 2.34E-01

Followup -39.83 36.53

prague56 Baseline 2.974 80.49 -1.90E-03 1.81E-01

Followup 74.71 41.01

prague69 Baseline 11.91 70.59 -1.41E-03 1.61E-01

Followup 151 50.36

prague100 Baseline 30.53 84.5 -1.14E-03 1.43E-01

Followup -11.29 59.69

Prague18 Baseline 24.85 66.4 -1.36E-03 1.39E-01

Followup 194.1 82.12
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Figure 3.11: Curvature index density plot for detwisted versus nondetwisted recon-
structions.
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ing that both the detwisted and the nondetwisted versions perform better than the

unregistered versions.

Table 3.2a shows the curvature index and reconstruction error statistics for the

detwisted versions of the 6 pullbacks; table 3.2b shows the same for equivalent non-

detwisted versions of the pullbacks in question. The RMS error re�ects the 3-D

reconstruction algorithm's con�dence in its positioning of the pullback in space, and

of the vessel borders with respect to the centerline. It is a useful, but not infallible,

metric of the correctness of the reconstruction. The mean value over all the detwisted

pullbacks is 54.6; the mean value over all non-detwisted pullbacks the mean RMS error

is 66.4. A paired t test comparing the two columns gives a p− value of 0.13.

Between this relatively high p − value, and the fact that the sharpness of the

curvature index density plot (�gure 3.11) is reduced, the overall result is somewhat

inconclusive. Some pullbacks saw a noticeable reduction in error, others much less

so.

Figures 3.12, 3.13 show reconstruction error statistics juxtaposed with the �nal

absolute orientation value for each for the detwisted and non-detwisted versions of the

baseline and followup for patient #18, which is where the twisting artifact displayed

in �gure 3.4 was �rst observed. As can be inferred from the description of these plots

at the end of section 3.2.3, because these are all computed on actual patients in-vivo,

they are more a measure of con�dence in the geometric model than of measurable

error with regard to objective physiological reality. In both the baseline (�g 3.12)

and followup (�g 3.13), this consistency has been improved, which indicates that we

accomplished our goals with the detwisting procedure for this particular patient.
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Figure 3.12: Correction angle shown alongside reliability weight, baseline reconstruc-
tion.
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Figure 3.13: Correction angle shown alongside reliability weight, followup reconstruc-
tion.
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CHAPTER 4
DATA ANALYSIS

4.1 Data Model

Much of the structure of the data hierarchy re�ects the long history of the project;

nonetheless, e�orts have been made to modernize in order to improve the e�cacy of

the analysis and data mining stages of the project. A variety of XML �les and implicit

relationships have been merged into a relational database schema. The database has

been fully normalized to third normal form (3NF), which loosely means that every

column in a table contains information that uniquely applies to a single row in the

table. 3NF is a common software engineering best practice, which makes it easier

to enforce data consistency, and optimize search speed. Cached views are used to

maintain read performance, given the heavy read-bias of the database in this situation.

The advantages of this con�guration include:

1. One uni�ed repository for metadata eliminates versioning and permits sharing

across multiple users.

2. Flexibility with regard to change management: if a new column is added to a

table, existing software and data continue to work; moreover, because all records

are contained in the altered table, a sensible value can be added to all existing

rows when the column is added. This was much more di�cult to do reliably

with the XML based system.

3. Searching the patient metadata becomes vastly easier, because searching is in-

trinsic to the nature of a relational database, whereas previously it required

parsing many XML �les and traversing one-o� data structures.

4. Because searching is easier, identifying relationships among the data, and group-

ing patients based on metadata criteria for downstream analysis becomes trivial.

Figures A.1-A.4, in appendix 7, illustrate the schema.
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Many of the relationships in the schema embody the �has-a� relationship. In

summary, a �pullback� consists of one or more angiographic and IVUS data sets.

The pullback itself should actually consist of a single data acquisition; multiple angio

and IVUS imports allow for some experimentation with gating and synchronization,

which are on some level an inexact science in this case (this owes to the fact that any

errors, both human and equipment related, in the cath lab, can make identi�cation

of the R-peaks di�cult in both mediums). Likewise, multiple segmentations of each

in the data model permits comparison of automated and manual methods, as well as

permitting a human tracer to save multiple versions in the case of uncertainty.

4.2 Quantitative Indices

4.2.1 Methods

The 72 wedges described in section 1.4 will be referred to in this section also

as elements. VH (sec. 4.2.1.2) and WSS (sec. 4.2.1.3) indices were computed on an

element-by-element basis, with exactly 1 value for each wedge situated between a pair

of points in the 3-D reconstruction. Most morphologic indices were as well, with the

exceptions being curvature (a metric of the centerline, and therefore with meaning

only on a slice-by-slice basis), and eccentricity, which is the ratio of the thickest plaque

element in a slice to the thinnest plaque element in a slice, and therefore also has

meaning only at the slice level. Thin cap �broatheroma (TCFA, sec. 4.2.1.4) was

also computed only on a slice-by-slice basis.

4.2.1.1 Morphology

The morphologic indices include cross sectional area, surface area, and volume

computations of the lumen, plaque, and full vessel for each element. In a straight

cylinder, this would be redundant, but the volume and surface area measurements

re�ect the shape of the 3-D reconstruction. Volume values are computed using the

polytope method described in [40]. [16] evaluated 3 competing methods for imple-
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mentation of the volume computation and the polytope method was consistently the

most accurate.

Eccentricity, de�ned as PTmax/PTmin, where PTmax is the maximum plaque thick-

ness for a slice, and PTmin is the minimum plaque thickness for a slice. Eccentricity

is, therefore, de�ned as a �per slice� metric.

Curvature is de�ned per slice, while curvature index, used in 3.1.2 to validate the

registration, is the projection of the curvature onto the lumen surface at each point,

and as such is de�ned for each of the 72 elements per slice. The computation of both

of these indices is described in [17].

4.2.1.2 Virtual Histology

Virtual histology indices are computed by a 3rd party proprietary software package

provided by the acquisition system vendor (Volcano Corp). The software is based

on the work of [9]. It uses the raw RF signal from the ultrasound to infer plaque

composition, and classi�es each voxel as belonging to one of �brous, �brous fatty,

necrotic core, or dense calcium. A thin �media tissue� layer is provided for at the

edge of the EEL border.

According to Volcano's representatives, �brous fatty translates into the softer

�lipid pool� plaques; �brous is the �rmer, more heavily �brotic plaque. Because dense

calcium often e�ects a partial or complete re�ection, plaque classi�cation behind a

large calci�ed block is suspect [41],[42]; nonetheless, the classi�cation supplied by the

VH software is the best information we have regarding plaque composition.

The VH in this study is computed using an older version of Volcano's software

which is no longer sold by them but which is still in fairly wide clinical circulation.

This program provides no intrinsic hooks for interaction with third party software,

thus some creativity was required to properly make use of the data. The company

supplied us with sample code for reading the timestamp o�sets in their RF data �le;

no other details of the format were provided, thus we could not analyze the RF, but
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could retrieve the gating from the RF �le and use the embedded timestamps to load

our segmentation into their program.

The procedure involved in acquiring the VH data from the Volcano software pack-

age for these data sets is as follows:

1. Import images from DICOM using timestamps from RF data �le.

2. Segment IVUS images, re�ning the segmentation manually to produce an ac-

ceptable border.

3. Run the Volcano software package.

4. Import the required data set.

5. Step through the Volcano work�ow until the Volcano software package's seg-

mentation procedure has completed. This step is required to ensure that a

variety of �les whose format we have no documentation of and which we do not

have the ability to manipulate are in the required state for computation of the

VH.

6. Resample our segmentation to the spacing used by Volcano. (Our software uses

a radial format, centered at 0, with 360 points per frame, per border, with units

in pixels. Volcano's uses 512 points, scaled from 0..1, with the image center

coinciding to 0.5.)

7. Overwrite the Volcano borders with the resampled version of our segmentation.

8. Reload the data set in the Volcano program. Step through the work�ow all

the way to completion (because a segmentation is detected, it will not attempt

to resegment, but will merely reload the borders, and then proceed to the VH

analysis).
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9. Import the result of the VH analysis into our patient data repository; annotate

the database to re�ect the presence of an up to date VH analysis.

We compute percentages of each plaque type both for each slice, and for the 72

elements composing each slice; further composite indices as described in 4.2.1.4 are

computed using the individual voxel classi�cations along with their adjacency and

proximity to the lumen.

4.2.1.3 Wall Shear Stress

For computation of the WSS, �rst a surface mesh is generated, using the procedure

outlined in 2.1.3.

The triangulation procedure is wrapped in a python loadable module, which con-

nects in a software pipeline with the meshing facilities of the Vascular Modeling

Toolkit (VMTK), [43]. After the triangulation is completed and the endcaps are

stripped, the surface, along with the centroids of each of the inlets/outlets, is passed

downstream. The procedure has been fully automated, to be entirely turnkey such

that a job is dispatched for a particular reconstruction, and the results appear in the

database upon completion.

1. Create surface/identify boundary centerpoints (procedure from section 2.1.3).

2. Build centerline tree with radius values for main vessel and all branches (VMTK).

3. Create volume mesh, using centerline and radius information to adaptively vary

tetrahedra size, thereby optimizing running time and accuracy jointly (VMTK).

4. Get distance from each boundary point to boundaries identi�ed in the volume

meshing. Use this information to correctly determine the �ow inlet (python

script developed by us).



www.manaraa.com

61

5. Generate a batch �le script for running commercial solver Fluent, with initial-

ization and boundary conditions properly con�gured (python script developed

by us).

6. Generate a �nal mesh output �le compatible with Fluent, so the job can be

launched automatically (VMTK).

7. Launch �uent; wait for it to terminate successfully.

8. Postprocess: interpolate the Fluent output back onto the original structured

grid of the vessel from the original 3-D reconstruction.

9. Compute the component of the WSS that lies tangential to the vessel wall, to

be used as a classi�cation feature ([19],[20],[21]).

10. Write out a �nal �le in the patient directory hierarchy; add an entry to the

relational database for the WSS data for easy retrieval.

The output of the solver is interpolated back onto the 72 points per slice from the

original 3-D reconstruction, and then the tangential component of WSS is projected

onto the lumen surface. This �nal value, termed TWSS from here forward, is the

terminal value of the WSS indices as we use them. The details of this computation

are described in [19],[20],[21].

Figure 4.1 shows the �nal TWSS output projected onto the vessel wall for both the

baseline and followup pullbacks for one of the patients. The coloring is bracketed at

-5 Pa (blue) to 8 Pa (red). Most of the values lie between those two extrema at small

values (yellow/green). The TWSS values are not computed for the bifurcations, thus

they are uniformly green by virtue of having TWSS values of uniformly zero. The

blue ring near the proximal end of the baseline (�g. 4.1a) indicates the proximal point

of the registration, corresponding to the end of the followup image. The registration

for this patient is distally aligned at frame 0 for both pullbacks, thus there is no
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Figure 4.1: Wall shear stress, both pullbacks for 1 patient. Proximal end is top-right,
distal end is bottom-left, for both.

(a) Baseline

(b) Followup
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distal blue ring. The red directly inside the branch is a re�ection of the fact that

WSS within branches is relabeled to in�nity in post processing in order to make the

branch locations easy to visually identify.

In both images, a sharp drop in WSS immediately downstream of the middle

branch can be seen, re�ecting one of the more obvious impacts of the branch's presence

on the WSS values. The fact that in spite of having the coordinate frame aligned

between the two, the two vessels are clearly positioned slightly di�erently, and the

discrepancy grows between the distal and proximal ends, illustrates the challenges

and uncertainties involved with the 3-D reconstruction.

4.2.1.4 TCFA

A thin cap �broatheroma, or TCFA, is a speci�c type of lesion known to have high

risk of rupture and thrombosis, and therefore a high degree of implication in mortality

caused by sudden cardiac arrest. Composite quantitative indices (considering VH and

morphologic parameters jointly) based on the AHA's de�nition of a TCFA are also

computed as features to be used in the classi�cation system described in chapter 5.

From [44]: �Early in atherogenesis, the nascent fatty streak evolves into a tran-

sitional lesion, also known as the preatheroma. Death of macrophages, hypoxia,

extravasation of erythrocytes, and free cholesterol replace lipid pools to form necrotic

cores. Disease progresses through necrotic core expansion by active digestion of col-

lagen, reducing the rim of �brous tissue separating the core from the lumen. This

advanced lesion is the hallmark of human atherosclerosis, and the American Heart

Association termed it the �broatheroma. When macrophage-derived collagenolytic

activity ruptures the cap of the �broatheroma, the highly thrombogenic core is ex-

posed to circulating blood and triggers thrombosis [45]. In fact, when quanti�ed

by ocular micrometry, all ruptured plaques are characterized by a thin �brous cap,

(<65 µm in thickness), a large necrotic core, and increased macrophage in�ltration

[46]. Adding these 3 characteristics to the American Heart Association de�nition of
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�broatheroma led to the distinction of TCFA as a separate entity [46].�

The principal di�culty with identifying TCFA lesions with IVUS is the axial

resolution of the modality itself: depending on the frequency used for imaging, spatial

resolution typically ranges between 100-200 µm. Given that the thin cap in question

in the TCFA is de�ned to be <65 µm, the cap itself is by de�nition invisible. (OCT

does have su�cient spatial resolution to see the thin cap, but lacks the VH plaque

characterization capability of IVUS. Rathore et al. [4] have done work to combine the

two, as an alternate means of getting around the limitation.) Due to this limitation,

and based on the understanding that necrotic core plaque type will never abut the

lumen directly, a VH-TCFA de�nition was created as follows [44]:

• Necrotic core ≥ 10% total plaque area.

• Total plaque burden ≥ 40%.

• Necrotic core in direct contact with the lumen.

This roughly matches the de�nition used by [47] in their e�ort to correlate TCFA

with Framingham score. Their results were promising, if preliminary, and suggest

that there is value in searching for these lesions in IVUS images. Working from this

accepted de�nition as a starting point, and terming it de�nition A, we have attempted

to re�ne and improve the selectivity and speci�city of this de�nition with regards

to positive identi�cation of TCFA candidate lesions in the IVUS image volume. 4

classes of de�nitions, which can be further speci�ed by constraining the portion of

the atheroma examined, have been de�ned, as below.

(A) Same as the de�nition above.

(B) Same as above, but necrotic core behind a calcium shadow is excluded from

consideration, in keeping with the observations of [41].
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(C) Only count necrotic core that is part of a connected component that abuts the

lumen. Compute connected component labeling in 2-D, with an 8-neighborhood.

(D) Same as (C), but using 10-neighborhood (e.g., the logical OR of 6-neighborhood

and 8-neighborhood, chosen because of the signi�cant anisotropy of IVUS voxel

spacing).

(E) Same as (A), except that all necrotic core further than 1 mm from the lumen-

lamina border is ignored.

Figure 4.2: Phantom image used to validate connected component labeling.

Connected component labeling used in de�nitions C and D is performed using

a depth �rst search, with metadata attached to the vertices of the graph in order

to permit a useful extraction of the underlying image locations and plaque types at

the end of the graph search. Figure 4.2 provides an example of the phantom images
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that were generated to validate the connected component labeling and the subsequent

TCFA classi�cation based on the labeling. The procedure was run on synthetically

generated phantom images similar to �gure 4.2. Both the numbers of connected

components detected, and the TCFA status (e.g., true or false) was veri�ed to match

the expected values; in each case the result was correct.

4.2.2 List of Indices

In addition to the indices described in section 4.2.1, a variety of demographic data,

serum biomarkers (collected at the time of the imaging, therefore potentially di�ering

between baseline and followup) and genetic markers are compiled for each patient to

permit division of the patients into subgroups as appropriate and to assist in �nding

meaningful correlations.

The overall list of indices is based on those outlined in [10]; the indices used in

this study are listed in table 4.1. Slice indices refers to indices computed once for

each IVUS frame. Element indices are computed once for each of the 72 points per

IVUS frame computed in the 3-D reconstruction. Per patient and per pullback refer

to demographic and chemical biomarkers that apply more globally. Many of the slice

indices are aggregate (either sum or average) versions of the element indices. The

TCFA indices are either evaluated to �true� or �false� per frame, and thus apply only

to the slice indices. Eccentricity, as a ratio of max plaque thickness to min plaque

thickness, also can apply only to a slice.

The indices that measure a volume or a percentage can be aggregated over any

arbitrary region of the vessel as is useful and convenient. This is in fact done to some

extent in section 5.1.2. The TCFA indices can be aggregated into what might be

thought of as either a percentage or a con�dence value, depending on perspective,

where each �true� is represented with a 1 and each �false� as a 0, and the mean

computed.

Some indices were not actually used in training and testing the classi�er. These
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are displayed in strikeout font. These include the alternative TCFA de�nitions (only

de�nition E was actually used, based on a parallel study that found it to be the most

discriminative), and the volume indices, which, based upon uncertainties involved in

the 3-D reconstruction, were determined to be redundant with respect to the cross

sectional area (CSA) indices.
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CHAPTER 5
CLASSIFICATION SYSTEM

The Weka [48] software suite was chosen for the classi�cation task based on its

rich library of classi�ers and preprocessing tools, and its reputation and ease of use. A

preliminary evaluation of the data found decision tree algorithms to perform the best

consistently, when compared against backpropagation neural networks (using Weka's

multilayer perceptron implementation), support vector machines (SVM), and a naive

Bayesian classi�er.

Because of the limited separability of the data, and in order to maximize perfor-

mance of the classi�er, a large variety of classi�er designs were benchmarked against

each other in an exhaustive search. The parameters varied were feature selection

(absence/presence, and style, described in section 5.2), resampling rate (described in

section 5.1), classi�er style (random forests were evaluated on their own, J48 trees in

conjunction with various meta-classi�ers), and what will heretofore be referred to as

glob-size. Glob-size is described in detail in section 5.1.2, but refers to the practice

of aggregating samples into larger chunks as a means of data smoothing and noise

reduction.

Each classi�er was trained on the input data listed in table 4.1. Outputs were as

speci�ed in table 5.1. Per-patient indices are displayed in strikeout type to indicate

that they were dropped from the classi�er. The reason for this is that there were

too few examples of any of these incidents to meaningfully classify. There were no

incidences of death, hospitalization, or infarction, or any other clinical event deemed

signi�cant by the physician who collected the data.

The output values were quantized based on criteria described in section 5.1.4; they

were also analyzed using a simple binary +/− measure as an alternative standard.

TCFA was assessed using both de�nition A, which is the most traditional standard,

and de�nition E, which was found to be one of the most descriptive in a related, but
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Table 5.1: Classi�er output variables

Region Output: Global Patient Output:

Lumen Cross Sectional Area Change [+ + /+ /0/− /−−] Myocardial Infarction [Y/N]
Avg. Plaque Thickness Change [+ + /+ /0/− /−−] Cardiac Hospitalization [Y/N]
Fibrous % Change [+ + /+ /0/− /−−] Revascularization [Y/N]
Fibrous Fatty % Change [+ + /+ /0/− /−−] Clinical Event in 12 months [Y/N]
Necrotic Core % Change [+ + /+ /0/− /−−]
Dense Calcium % Change [+ + /+ /0/− /−−]
TCFA Con�dence Value Change [+ + /+ /0/− /−−]

yet unpublished study, and was found to be present in a large minority of frames in

this data set.

5.1 Preprocessing

5.1.1 Exclusion Marking

Figure 5.1: Tracing discrepancy between baseline and followup.

IVUS is notoriously di�cult to segment automatically, and even among expert

tracers, there is often disagreement on more heavily diseased frames. In particu-

lar, stents and calci�cations re�ect the ultrasound signal, resulting in shadows that

occlude arterial features. While the inner (lumen/lamina interface) border may be
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clearly visible, the outer (media/adventitia interface) border is impossible to discern.

This in turn means that even if the same expert tracer evaluates both the baseline

and the followup, there is a high probability of inaccuracy with regards to plaque

thickness and any other metrics that depend upon it. Thus we label regions of the

pullbacks where stents are present, and mark calci�cations that produce shadowing

su�ciently severe as to make meaningful tracing of the outer border impossible.

The interface used is completely manual, but simple and fast to use. The marking

is performed using the same tool that is used to segment bifurcations. A dialog box for

exclusion marking can be opened at the click of a button. The cursor is placed at the

start and end frame, or, alternately, the user can type in frame numbers, and a button

is clicked to enter the exclusion into the database. Previously marked exclusions for

the currently opened IVUS segmentation are stored in a drop-down list in the dialog

box used to mark them, and they can be modi�ed or deleted from this interface.

When an exclusion is marked, a color-coded bar appears in the longitudinal view,

indicating the type of exclusion. (All landmarks, including branches, are marked in

this way. The blue bars in �gure 5.1 identify the locations of branches; calci�cations

are marked in yellow, and stents in white.)

Figure 5.1 illustrates the di�erence in tracings for the same heavily calci�ed loca-

tion in the baseline and followup pullbacks for one patient. While it's clear the traced

borders do not match, more problematic is the fact that one can plainly see that there

is no discernible feature past the heavy calci�cation that can be fairly regarded as the

border. The media/adventitia interface is completely concealed within the shadow,

making accurate adjudication of the border impossible. Due to the fact that such

locations make it impossible to meaningfully predict changes in plaque thickness �

given that we have no con�dence in our estimate of the border location � we exclude

them from the training and testing data.
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Table 5.2: Glob sizes used in preprocessing.

ag sg
18 1
36 3
72 5
9
3

5.1.2 Globbing

While the registration performs well, there are nonetheless uncertainties present.

Moreover, in cases where the gating is choppier, either due to cardiac arrhythmias

or to poor signal, there is a high degree of spatial uncertainty within the pullback,

never mind in its mapping to another. One important way of compensating for this

while still making good predictions about changes in disease is to average or aggregate

features spatially.

To perform the globbing, each data set was �rst viewed in terms of the resolution

of the 3-D reconstruction: 72 wedges, or elements, as discussed in sections 1.4 and

4.2, along a ring, 1 ring per frame. A wedge therefore constitutes a 5 degree (5 =

360/72) angular subset along a ring, or slice, where a slice is de�ned as all the data

corresponding to a single IVUS frame.

Globs were then constructed by aggregating in the angular direction (along the

ring) and in the axial direction (across multiple frames). The sizes used can be seen

listed in table 5.2, where ag indicates the size of the chunk around the ring (number

of 5 degree wedges concatenated to form a larger wedge), and sg indicates the number

of slices chunked together. Thus each glob covers a speci�c volume determined by

sum of the number of angular wedges and longitudinal slices concatenated together.

The sizes speci�ed in table 5.2 were combined in an all-to-all fashion, forming 15

total permutations of glob-size for the exploration of the classi�er space.
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Because the running times for classi�er regressions were extremely long, and be-

cause in initial tests it never performed signi�cantly better than the 3-wedge variety,

the 1-wedge glob size was scrapped, and thus the smallest aggregate in the angular

direction was 3, which corresponds to 15 degrees = 3 ∗ (360/72).

5.1.3 Imputation of Missing Values

Some value must be present at each location in the training and testing vectors

for both learning and classi�cation to work. While patients were excluded from

consideration any time image data was missing or unusable, for a variety of patients,

some portion of the biomarker or demographic data was missing. In these cases,

it was necessary to synthesize replacement values, and it was important that the

replacement values not undermine the classi�cation procedure.

Weka's default method of handling missing data is to simply select the median

in the case of numeric columns, or the mode for categorical ones. The most recent

implementations of random forests include a much more sophisticated method of

�lling in missing values. It begins by performing a rough replacement, using median

and mode values. It then constructs a decision tree to compute proximity among

samples, and attempts to infer the missing values based upon this.

This was the method used in this work to infer missing demographic and biomarker

data (if missing data was detected in the other features, execution was halted, as it

was considered to either be a problem with the data, or an indication of a software

bug).

Also, because the granularity of the training and testing samples was at the level

of individual locations inside of a vessel, there was the possibility that the random

forests imputation method would produce contradictory values for demographic or

biomarker information for a given patient. Thus a post-processing pass was used

to homogenize the values by taking the mode on a per-patient level, so that the

data makes sense in the context in which it was collected. For binary features (e.g.,
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diabetes, hypertension), the de�nition of the mode was the same that is in common

use: the most frequently occurring value. In the case of numerical features, there

exists a wide range of methods in the literature for selection of a value that meets the

de�nition of mode; in this case, a kernel density estimate, using a Gaussian kernel,

was selected, with the value for all samples corresponding to a given patient taken to

be the peak of the kernel density estimate.

In summary, the procedure is:

1. Initialize missing values to median/mode values.

2. Use random forests rfImpute function (from the R random forests package) to

impute missing values into all samples.

3. Homogenize binary valued features using the most frequently occurring value.

4. Homogenize numerically valued features using kernel density peak (using the R

modeest package).

5.1.4 Output Binning

To determine the actual quantization levels for the output values (−− /− /0/+

/ + +), somewhat arbitrary lines must be drawn to constitute what makes a major

change versus merely a change, but more importantly, what constitutes a change at

all, rather than variation within the noise threshold.

Figure 5.2 shows the distribution of the output samples for the 6 output features,

tabulated for all the various glob-sizes. It can be clearly seen that a) all the output

features have a slight negative bias and b) the samples for all features are heavily

clustered around 0.

The locations of the cuts used to quantize the outputs are described in equation

5.3. The cuts were made somewhat arbitrarily; while we experimented with the width

of the zero category, and found we generally got the best results with this con�guration
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(the mode of variation was principally widening and narrowing the 0 category). While

the ++ and −− categories probably could have been expanded at the expense of +

and −, given the data set's heavy bias towards 0 we wanted to maximize the + and

− minority classes. While narrowing the 0 category would rebalance the data set,

given the large uncertainties throughout the process of collecting this data, we feel it

is important to be conservative in the labeling, erring on the side of estimating �no

change�.

The impact of the output binning upon statistical e�ect size and power is described

in section 5.3.3.1.

∆ = vmax − vmin (5.1)

σ =
∆

9
(5.2)

F (v) =



0 if v ∈ (− σ

1.5
,
σ

1.5
] ,

+ if v ∈ (
σ

1.5
,
8σ

3
] ,

− if v ∈ (−8σ

3
,− σ

1.5
] ,

++ if v ∈ (
8σ

3
, vmax] ,

−− if v ∈ [vmin,−
8σ

3
]

(5.3)
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Figure 5.2: Output feature density plots.
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5.1.5 Resampling

Figure 5.2 makes it clear that the data is heavily biased towards a majority class

at 0. The choice of glob size has a slight impact upon the location of the mean and

the exact spread of the tails, but does little to alleviate the central problem. Because

of this, resampling was employed to improve classi�er performance. Most results in

the literature indicate that undersampling leads to better performance than oversam-

pling ([49]), for most problems. Chawla et al. [50] published an algorithm called

SMOTe (Synthetic Minority Oversampling Technique), which attempts to improve

the results in oversampling by spatially inferring new minority samples, rather than

merely repeating existing samples. In our experiments, this did not work any better

than traditional oversampling; this may be a product of the poor separability of this

problem.

In our evaluation regressions, we compared for each classi�er design a nonresam-

pled data set, and sets resampled, with replacement (same total number of samples,

with some fraction of majority samples replaced with repeated minority samples).

The Weka resample �lter was used. This �lter combines undersampling of the major-

ity class with oversampling of the minority class � termed replacement, each discarded

majority class sample is replaced by a duplicate copy of a minority class sample. The

one parameter that is set is called the bias, which determines the rate at which the

under/oversampling takes place. A bias value of 0 indicates that the output is iden-

tical to the input, and a bias value of 1 indicates that the output will have a uniform

class distribution.

We ran the �lter at rate values of 0, 0.3, 0.6, and 0.9. For most output features,

the resampled data sets led to better classi�cation results, though the details of that

are discussed fully in section 5.3.4.
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5.2 Feature Selection

Feature selection was performed in this study for two reasons: �rst, it reduces the

risk of either over�tting, or training on irrelevant features � thereby improving overall

classi�cation performance. The second reason is that it provides an opportunity to

glean insights about the relationships in the data beyond mere Pearson correlation

coe�cients, by illustrating which features most e�ectively drive classi�er performance.

5.2.1 Methods

Pudil [51] demonstrated that robust feature selection cannot be always cleanly

separated from classi�er design. He outlines an iterative algorithmic procedure for

optimizing a feature set against a speci�c classi�er design, wherein features are added

and removed until the classi�er's error rate is minimized, known in the literature as

Sequential Floating Forward Search, hereafter SFFS. It continues to deliver some of

the most robust results available, though it has now been expanded into a multitude

of variant approaches [52].

In our case, we rely on Weka's implementation of SFFS, implemented as the

linearForwardSearch �lter, implemented by Gütlein as described in his thesis [53].

This �lter is used in conjunction with Weka's classi�erBasedAttributeSelection �lter,

evaluated on a J48 decision tree classi�er [54]. (J48 is the open source, Weka im-

plementation of Quinlan's well known C4.5 algorithm.) The J48 algorithm was used

with the con�dence threshold for pruning set to 0.25, and the minimum number of

instances per leaf set to 2.

The procedure is described in �gure 5.3; convergence criteria is based jointly on

total number of features selected (or width, meaning fraction of available features), and

number of iterations performed. The procedure terminates when the selected number

of features is within the range of total desired features, and removing additional

features yields no improvement.
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Figure 5.3: Flowchart describing feature selection procedure.

Initialize modelSimple ranking

Unconditionally
add a feature

Remove the lowest
ranking feature

Performance
improved?Revert feature removal

Converged?

Stop

Yes

No

No

Yes



www.manaraa.com

80

5.2.2 Experimental Methods

We divided the data set into 32 cross-validation folds, one for each patient. This

ensured that generalization was at a per-patient level, and eliminated the risk of train-

ing on testing data. A full evaluation run of the classi�cation system was performed

prior to performing feature selection, as described in section 5.3.3.

The glob sizes, resampling rates, and classi�er types that were most successful in

this initial run were each then used in the feature selection run, to explore whether

performance could be improved with feature selection. While classi�er performance

was not output by the feature selection code, the frequency with which each feature

appeared in the �nal subset of the feature selection was stored for each output variable,

as seen in table 5.3.

A visualization of inter-feature correlations is shown in �gure 5.4 as well. The

eccentricity of the ellipse indicates the degree of correlation (hence the main diagonal

is all �at discs, as the correlation is uniformly unity), and the direction in which the

ellipse is pointed indicates the direction of the correlation. The color varies from

red to blue, with red indicating negative correlation, and blue indicating positive

correlation. While this is also illustrated with the shape and canting of the ellipses,

the color makes it easier to see, given the small size and large number of cells in the

matrix.

5.2.3 Results

Table 5.3 shows the frequency with which each feature was selected for each of the

output variables. In the case of plaque thickness, it can be seen that each feature was

selected at least once; the number of non-zero rows for each output variable were: 36

for plaque thickness change, 35 for lumen CSA change, 24 for �brous % change, 32

for �brous-fatty % change, 16 for necrotic core % change, and 30 for dense calcium

% change.
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Figure 5.4: Inter-feature correlations for all inputs and outputs. Red indicates nega-
tive correlation, blue indicates positive.
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Table 5.3: Feature selection summary.

PT LCSA F Pct FF Pct NC Pct DC Pct

lumenCSA 14 15 0 3 0 1

plaqueThickness 36 6 5 13 2 5

TWSS 13 5 0 2 0 2

curvatureIndex 23 6 1 3 0 2

eccentricity 13 10 0 2 1 2

FF Percent 28 6 0 3 0 0

FL Percent 20 6 1 13 0 1

NC Percent 13 2 3 2 3 2

DC Percent 20 5 4 3 2 6

TCFA Def E 17 0 3 1 1 2

smokinghistory 5 1 1 1 0 0

currentsmoker 13 2 0 0 0 2

diabetes 10 1 1 2 0 0

hypertension 16 5 3 2 0 5

hyperlipidimia 4 2 1 3 1 3

familyhistory 7 4 0 3 2 2

previousmi 16 2 2 4 1 1

hopolymorphism 3 2 2 2 0 2

enospolymorphism 16 4 2 1 0 3

betablockers 22 5 3 0 1 4

acinhibitors 14 4 5 5 2 1

statins 15 4 1 1 0 1

aggressivetreatment 19 7 2 2 0 1

sex 19 7 3 4 2 1

choltotal 3 6 0 2 0 0

cholhdl 8 2 0 2 0 1

cholldl 5 1 1 1 2 1

triglycerides 7 1 1 1 0 1

markeril6 9 7 0 4 2 0

markervcam 5 1 2 1 2 1

markercrp 9 2 2 3 0 3

cholapoa 12 5 0 8 0 0

cholapob 10 4 0 1 0 2

markericam 9 2 0 0 1 3

markertnfalfa 6 2 3 3 1 1

markercd40 4 1 1 0 0 1

PT=plaque thickness change LCSA=lumen CSA change F=�brous % change

FF=�brous fatty % change NC=necrotic core % change DC=dense calcium % change

Figure 5.4 shows a graphical representation of a correlation matrix. Few strong

correlations exist between the per-element features, such as plaque thickness, lumen
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CSA, VH percentages, or the change in any of these � and those that exist are largely

between the change versions of those indices and the raw input versions thereof. Many

of the strong correlations depicted in the chart exist between pairs of biomarkers

and/or demographics. This is unsurprising, in the sense that these are among the

least noisy indices in the data set, but can still provide for interesting insights.

While few features showed strong correlation with plaque thickness change in

�gure 5.4, those with the strongest (most elliptical) cells in �gure 5.4 were also among

the most frequently selected in table 5.3. This pattern breaks down with some of the

other outputs, where all features were selected relatively infrequently. This may owe

to the fact that the individual test folds, taken at a per-patient level, were overly

speci�c, and led to an over-�tting of the feature selection. (There are folds in the

cross validation that, for a given output, contain samples restricted to a single class.

This in turn can lead the feature selection to generate a classi�er with a single leaf

node belonging to the present class, and to conclude that none of the features are

necessary).

5.3 Classi�er

Decision tree algorithms are known for their good performance when presented

with limited separability, and as such they were a natural choice for this particular

problem. They do not require normalization of inputs, which obviates an otherwise

important piece of preprocessing, can handle both numeric and categorical inputs

side-by-side, and are insensitive to missing data, a valuable asset when many biomark-

ers are only available for an complete majority of patients in the study. They also

are typically very fast, performance-wise, in training and testing, which has obvious

advantages when there exists a desire to test a variety of con�gurations.

Experiments focused on the J48/C4.5 model, developed in [54], and the random

forests method developed by [55], both of which are well regarded and well studied

in the literature, and both of which were available in the Weka software package.
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Table 5.4: Classi�er styles

Base classi�er Feature selection Boosting Resampling rates

J48 Simple Ranking Adaboost 0,0.3,0.6,0.9

J48 PCA None 0,0.3,0.6,0.9

J48 None Adaboost 0,0.3,0.6,0.9

J48 SFFS, Nonzero Adaboost 0,0.3,0.6,0.9

J48 SFFS, Most selected Adaboost 0,0.3,0.6,0.9

Random forests None None 0,0.3,0.6,0.9

Random forests SFFS, Nonzero None 0,0.3,0.6,0.9

Random forests SFFS, Most selected None 0,0.3,0.6,0.9

Adaboost [56] was used in a number of the more successful trials.

5.3.1 Algorithm overview

5.3.1.1 J48

J48 is the name of an open source Java implementation of Quinlan's [54] C4.5

algorithm, which is in turn based on his earlier ID3 algorithm. Both are based

upon the entropy/information gain inherent in each feature. Pseudocode for the J48

algorithm is shown in algorithm 4. Base cases referenced in step 1 refer to situations

where either a) all samples belong to a single class, b) none of the features provide

any information gain, or c) a previously unseen class is encountered, in which case a

node is created higher up the tree.

In this case, information gain refers to the entropy of a feature. Equation 5.4 gives

the entropy for a feature f , where n represents the set of all values the feature can

take. A feature with more diversity in its representation within the training set will

have higher entropy, and therefore its selection will yield greater information gain.

Thus the training procedure involves recursively splitting on features presumed to be

the most discriminative based upon the variation within them.

The tree is also pruned, though this is not shown in the pseudocode. Based on

the con�guration used in this work, a feature is pruned if the learner's con�dence in
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the node is less than 25%. This step is designed to reduce over�tting.

E(f) =
∑
∀n

fn(−log(fn) (5.4)

Algorithm 4 J48 pseudocode

NODES ⇐ ∅
Check for base cases
for a ∈ ATTRIBUTES do
Find normalized information gain from splitting on a

end for
NODE ⇐ NEW (NODE,BEST (a))
Recurse on sublists from splitting on NODE; add new NODES as children of
NODE

5.3.1.2 Random forests

Random forests are an ensemble classi�er method developed by Breiman [55]. In

the course of learning, a large number of decision trees are assembled, which then

vote, such that the mode of all outputs is selected as the �nal choice. Pseudocode is

given in algorithm 5.

Algorithm 5 Random forests pseudocode

M ⇐ COUNT (features)
N ⇐ COUNT (samples)
for all TREES do
Take subset of samples of size n
Take subset of features of size m
Grow tree fully, with no pruning

end for
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5.3.1.3 Adaboost

Adaboost is built on the premise that an ensemble of weak classi�ers, trained

successively, such that the training of later classi�ers is biased to emphasize those

examples that were the most di�cult to train earlier in the process. In general, so

long as the weak classi�ers perform better than random, adaboost reliably improves

the overall classi�cation rate.

5.3.2 Methods

Random forests and J48 trees were assembled in the 8 con�gurations shown in

table 5.4. For an initial run, only the 4 con�gurations without SFFS were used, to get

a baseline of globbers and resampling rates that were e�ective in classi�cation, before

attempting to improve results with feature selection. Each of the 4 was resampled at

the rates described in the �resampling rates� column, for a total of 16 classi�ers. The

J48+PCA combination was actually implemented using a technique called rotation

forests, described by [57], in which random subsets of the features are subjected to

PCA, the result of which is used for training. In 2 of the con�gurations, J48 was

subjected to Adaboost [56], which considerably improved its performance.

For each of the glob sizes described in table 5.2, each classi�er in table 5.4 was run

on all 6 output features. At 15 glob size con�gurations, that yields 15× 16 classi�ers

per output feature, or 240 classi�ers per feature. This large number was evaluated as

described in section 5.3.3, after which the top performing resampling rates and glob

sizes for each output variable were reassembled into the feature selection procedure

described in section 5.2.1.

A subsequent regression was performed, using the 4 classi�er types from table

5.4, restricted to subsets of the feature set as described in table 5.3. The classi�ers

labeled nonzero were evaluated using all features from the corresponding column in

table 5.3 whose value was nonzero; those labeled most selected were evaluated using

all features that were selected at least half as often as the most frequently selected
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Table 5.5: Grid describing class performance.

−− − 0 + ++
−−
−
0
+

++

feature.

5.3.3 Experimental Methods

A leave-one-out cross-validation scheme was constructed so that each classi�er

was trained on a dataset composed of samples from (n− 1) = 31 patients, while the

test set was composed of samples from the remaining patient. This maximizes our

use of our limited test data, while simultaneously ensuring that no over�tting takes

place related to training on the test set. A set of box and whisker plots (�gs. 5.6a

- 5.6f) was composed for each output feature to demonstrate variability in accuracy

over the whole set of patients.

Table 5.5 shows a blank confusion matrix with the 5 classes used in the output

variables at its margins. Columns represent detected class, rows represent true class.

The diagonal indicates correct in-class classi�cation; a uniform distribution among

all cells would indicate a classi�er with completely random output. To sift through

the large number of classi�ers created by the search described in section 5.3.2, a

scalar metric for ranking the classi�ers was needed. AUC, or area under the curve,

which describes the area under the ROC (relative operating characteristic) curve is a

popular metric in machine learning because it provides a straightforward, meaningful

scalar value by which a classi�er can be assessed.

Unfortunately, it's not clearly applicable to multi-class classi�cation. Weka does

provide an AUC metric for each class in its output, generated by combining all �other�
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classes into the �false� category. Landgrebe [58], Everson [59], and Fieldsend [60] all

published varying attempts at extending the AUC to the multiclass case; however,

because in this case misclassi�cation costs were purely a function of distance from

target class, and the dataset was heavily unbalanced, a simple metric produced by

summing the in-class accuracy was used for ranking classi�ers. If we call this metric

ρ, we save for further consideration all classi�ers meeting the criteria described in

equation 5.6, where σf is the standard deviation computed over all classi�er accuracies

for a given feature.

ρ =

∑
∀xMx,x∑
∀x,yMx,y

(5.5)

ρmax − ρ < σf (5.6)

One simple, and useful, interpretation of the metric given in equation 5.5 is that

any score > 1 indicates a classi�er that performs better than the zero-R, or maximum

likelihood classi�er (that is, classifying all samples to be members of the most common

class). Table 5.9 makes it clear that while the results are far from perfect, the best

classi�er in each case beats a maximum likelihood classi�er.

5.3.3.1 Power analysis

Power analysis is a statistical technique that illustrates the su�ciency in a data

set for detecting a given change. It serves a purpose complementary to the p-value:

whereas the p-value provides an indication of whether an observed result was a result

of random chance, the statistical power describes the odds of observing a result,

should one actually exist. Computation of power requires a p-value, a sample size

(n), and an e�ect size (d). In this case, we set n = 31, corresponding to the number

of patients in the training set, given our leave-one-out training model. p-value was set
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Table 5.6: Statistical power measures per output feature

(a) Plaque thickness change

Label d Power
−− 0.4095 0.3546
− 0.1259 0.07767
+ 0.119 0.07468
++ 0.4118 0.3579

(b) Lumen CSA change

Label d Power
−− 0.3901 0.3271
− 0.1224 0.07612
+ 0.1264 0.07788
++ 0.3489 0.272

(c) Fibrous % change

Label d Power
−− 0.3431 0.2646
− 0.1194 0.07487
+ 0.119 0.0747
++ 0.3463 0.2687

(d) Fibrous-fatty % change

Label d Power
−− 0.3707 0.3006
− 0.1338 0.08129
+ 0.1318 0.08037
++ 0.3409 0.2618

(e) Necrotic core % change

Label d Power
−− 0.3419 0.2631
− 0.1261 0.07777
+ 0.1264 0.0779
++ 0.3479 0.2707

(f) Dense calcium % change

Label d Power
−− 0.4207 0.3708
− 0.1307 0.07986
+ 0.1376 0.08313
++ 0.3903 0.3273
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to 0.05, which is a standard cut-o� for signi�cance. d was computed using Cohen's

formula (5.7), modi�ed to take into account the method by which we binned our

output values (5.8), (see section 5.1.4).

This method of computing e�ect size is justi�ed given that, in this study, the

e�ect size measures changes within a single distribution. The di�erences in means

amongst the classes were all at least 1 standard deviation, which in turn meant that

d was always greater than 1, if Cohen's method was used unmodi�ed, and statistical

power in turn was always estimated to be unity (or perfect). To give the estimate

meaning, we instead measured the distance of the mean of a given class from the

mean of the 0 class (signifying no change, whose mean was always de�nitively 0), as

a fraction of the total distribution width.

d =
x̄1 − x̄2

s
(5.7)

d =
x̄class

xmax − xmin
(5.8)

Statistical power is shown for each of the output variables in tables 5.6a - 5.6f.

Because of the small sample size, power is very low for the + and − categories;

unfortunately, due to the concentration of samples around 0, there are too few −−

and ++ in the data set in general for the classi�er to be e�ectively trained on them

in spite of the considerably higher statistical power for detecting them.

5.3.4 Results

Detailed results from each of a) 5-way output, no SFFS, b) 3-way output, no

SFFS, and c) 5-way output, using SFFS to inform the subset of features trained

on are delineated in sections 5.3.4.1, 5.3.4.2, and 5.3.4.3 respectively. The feature

selection had no discernible impact upon the performance of the classi�ers. The

obvious conclusion would be that while the feature selection successfully identi�ed the
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most suitable features in the data set, the decision tree learners used for classi�cation

already rather robustly accomplish the same with intrinsic aspects of their algorithms.

On the other hand, table 5.7 demonstrates that accuracy is, on average, improved

by restricting the number of classes to 3, and simply merging the tails into the +

and − classes, on the grounds that there is insu�cient training data to meaningfully

identify all �ve classes.

Table 5.7: Average in-class accuracy.

ptc lcsa f � nc dc
5way, no fs 0.280 0.320 0.299 0.395 0.421 0.400
3way, no fs 0.445 0.432 0.483 0.529 0.602 0.599
5way, SFFS 0.263 0.278 0.309 0.384 0.389 0.410

ptc = plaque thickness change lcsa = lumen cross sectional area change

f = �brous plaque % change � = �brous-fatty plaque % change

nc = necrotic core plaque % change dc = dense calcium plaque % change

5.3.4.1 5 class, no feature selection

Table 5.9 shows the rankings on each feature after the �rst regression, prior to

SFFS feature selection, was performed. The confusion matrices corresponding to the

best from each output variable are then shown in tables 5.8a - 5.8f.

A summary of the overall results is also depicted in �gure 5.5. The blue bars

depict the in-class-accuracy for the best performing classi�er con�guration for each

output feature; the red bars depict additionally the o�-by-one percentage, where o�-

by-one means values misclassi�ed into an adjacent class � so − misclassi�ed as 0,

or vice versa. The top of the red bar for each column re�ects the sum of the two,

depicting the combined in-class and o�-by-one accuracy. This combined value is, in

general, quite close to one, indicating that most misclassi�cation errors were o� by

only one class.
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Figure 5.5: Overview of classi�er performance, scored by feature. Blue is in-class
accuracy; red is o�-by-one accuracy.
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Table 5.8: Confusion matrices for 5-way output

(a) Plaque thickness change (72_3 / 0.0 /
random forests)

−− − 0 + ++
−− 0 2 8 2 0
− 0 21 109 5 0
0 0 29 335 20 1
+ 0 8 57 21 5
++ 0 1 5 0 1

(b) Lumen CSA change (18_3 / 0.9 / ad-
aboosted J48 trees with feature selection)

−− − 0 + ++
−− 7 2 7 0 0
− 10 150 217 22 0
0 6 355 1575 164 7
+ 4 31 168 8 0
++ 0 4 2 1 0

(c) Fibrous % change (3_1 / 0.9 / adaboosted J48
trees with feature selection)

−− − 0 + ++
−− 0 50 2 3 0
− 4 2210 1858 353 1
0 4 3792 33081 5043 9
+ 0 430 2442 705 0
++ 1 2 10 5 0

(d) Fibrous-fatty % change (36_3 / 0.9 /
adaboosted J48 trees)

−− − 0 + ++
−− 3 1 0 1 0
− 1 87 84 14 0
0 2 131 867 86 1
+ 1 18 29 6 0
++ 0 0 1 0 0

(e) Necrotic core % change (3_1 / 0.9 / adaboosted
J48 trees)

−− − 0 + ++
−− 10 35 0 0 0
− 22 1706 276 51 0
0 1 1836 41080 1579 3
+ 0 284 2540 427 1
++ 0 15 108 31 0

(f) Dense calcium % change (18_3 / 0.9 /
adaboosted J48 trees)

−− − 0 + ++
−− 1 2 0 0 0
− 2 49 10 9 0
0 4 99 2149 158 35
+ 0 21 169 18 1
++ 0 1 11 1 0

Figure 5.6 illustrates how classi�cation accuracy varied over the data set, as a

function of which patient was the hold-out for the testing set. This illustrates the

considerable variability from patient to patient � this can also be seen in the results

of the feature selection, where many of the patients could be trained successfully with

just a small minority of the available features.
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Table 5.9: Best performers, 5 class
output.

Output Variable Classi�er Score

pt change 72 3 randf 0.0 1.399
lcsa change 18 3 abwfs 0.9 1.599

9 5 ab 0.3 1.549
9 5 abwfs 0.0 1.528
9 5 abwfs 0.3 1.503
9 1 abwfs 0.3 1.497
9 5 ab 0.0 1.496
3 5 ab 0.6 1.479
9 1 ab 0.9 1.456

� change 3 1 randf 0.9 1.495
3 1 abwfs 0.9 1.485
9 1 abwfs 0.9 1.472
18 3 abwfs 0.9 1.465
3 3 ab 0.9 1.456
3 3 abwfs 0.9 1.452
3 1 ab 0.9 1.45
3 1 rotf 0.9 1.449
9 5 abwfs 0.9 1.435
3 3 randf 0.9 1.434
9 3 ab 0.6 1.429
3 3 abwfs 0.6 1.427
9 5 abwfs 0.3 1.422
9 1 randf 0.9 1.417
9 3 abwfs 0.6 1.413
9 1 abwfs 0.3 1.411
36 3 abwfs 0.6 1.395
9 5 ab 0.9 1.39
3 1 abwfs 0.6 1.39
3 5 abwfs 0.9 1.388
18 5 abwfs 0.3 1.388
9 3 randf 0.9 1.383
9 1 ab 0.6 1.381
3 1 ab 0.6 1.38
3 5 abwfs 0.3 1.375

� change 36 3 ab 0.9 1.976
36 3 abwfs 0.9 1.897
36 3 ab 0.6 1.838

nc change 3 1 ab 0.9 2.107
3 1 abwfs 0.9 1.984
36 3 abwfs 0.9 1.919

dc change 18 3 ab 0.9 1.998
36 3 ab 0.9 1.972
36 3 abwfs 0.9 1.952

Score corresponds to ρ de�ned in eq. 5.5.

5.3.4.2 3 class, no feature selection

Table 5.10 shows the rankings on each output feature after a regression in which

the distribution was cut into only 3 output classes. This is shown for comparison, to

illustrate the e�ect of eliminating the ++ and −− classes, which in general had too

little training data to be e�ectively represented. Confusion matrices follow in tables
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Figure 5.6: Inter-patient variability, box and whisker plots.
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5.11a-5.11f.

5.3.4.3 5 class, with SFFS

Table 5.12 shows the results of re-running the regression from section 5.3.4.1,

restricting features to those selected in the SFFS procedure described in section 5.2.

It's worth noting that the feature selection had little impact on the overall accuracy,

and that the classi�ers most often chosen were versions that retained all features.

Confusion matrices are depicted in tables 5.13a-5.13f.
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Table 5.10: Best performers, 3 class output

Output Variable Classi�er Score

pt change 72 5 ab 0.6 1.334

72 5 rotf 0.9 1.326

72 3 rotf 0 1.313

72 3 randf 0.9 1.286

72 3 abwfs 0.9 1.285

72 1 abwfs 0.9 1.283

72 3 randf 0.6 1.265

lcsa change 9 1 abwfs 0.9 1.297

36 5 randf 0.9 1.292

36 3 abwfs 0.9 1.284

9 5 ab 0.9 1.266

9 1 randf 0.9 1.256

3 1 rotf 0.9 1.255

36 5 ab 0.9 1.248

� change 3 3 abwfs 0.9 1.449

9 5 abwfs 0.9 1.438

3 1 ab 0.9 1.432

3 1 randf 0.9 1.423

3 1 abwfs 0.9 1.421

9 1 randf 0.9 1.391

18 1 randf 0.6 1.387

� change 3 3 ab 0.9 1.586

3 3 abwfs 0.9 1.509

9 5 randf 0.9 1.490

nc change 3 1 ab 0.9 1.807

9 1 abwfs 0.9 1.805

9 3 abwfs 0.9 1.800

3 1 rotf 0.9 1.798

3 1 abwfs 0.9 1.797

3 3 abwfs 0.9 1.791

3 3 ab 0.9 1.775

dc change 3 1 abwfs 0.9 1.796

18 1 ab 0.9 1.784

3 1 ab 0.9 1.759

3 1 rotf 0.9 1.705

3 1 randf 0.9 1.690

3 1 ab 0.6 1.685

18 3 rotf 0.6 1.670
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Table 5.11: Confusion matrices for 3-way output

(a) Plaque thickness
change (72_5 / 0.6 /
adaboosted J48 trees)

− 0 +
− 28 49 4
0 58 141 31
+ 13 22 21

(b) Lumen CSA change (9_1 /
0.9 / adaboosted J48 trees with
feature selection

− 0 +
− 1009 1252 86
0 1892 10322 665
+ 229 1018 88

(c) Fibrous % change (3_3 / 0.9 /
adaboosted J48 trees with feature
selection)

− 0 +
− 847 781 105
0 1252 11443 1061
+ 190 951 168

(d) Fibrous-fatty % change
(3_3 / 0.9 / adaboosted J48
trees)

− 0 +
− 605 394 29
0 779 14293 295
+ 66 310 27

(e) Necrotic core % change (3_1
/ 0.9 / adaboosted J48 trees)

− 0 +
− 1648 411 41
0 1573 41732 1194
+ 264 2856 286

(f) Dense calcium % change
(3_1 / 0.9 / adaboosted J48
trees with feature selection)

− 0 +
− 732 179 17
0 859 45651 640
+ 132 1720 75



www.manaraa.com

99

Table 5.12: Best performers, 5 class output, with SFFS

Output Variable Classi�er Score

pt change ab NonZero 0.6 36 5 1.315

randf FiftyPercentile 0.9 18 3 1.207

ab NonZero 0.9 72 3 1.201

randf FiftyPercentile 0.9 18 5 1.192

randf FiftyPercentile 0.9 72 5 1.191

ab FiftyPercentile 0.9 18 3 1.182

randf FiftyPercentile 0.6 18 5 1.179

ab FiftyPercentile 0.6 18 3 1.166

ab FiftyPercentile 0.9 18 5 1.163

randf NonZero 0.9 18 5 1.161

ab NonZero 0.6 18 3 1.153

ab NonZero 0.9 36 3 1.144

lcsa change ab All 0.9 36 3 1.391

ab All 0 18 3 1.362

ab NonZero 0.6 36 3 1.335

ab All 0.6 36 3 1.327

ab NonZero 0.9 36 3 1.309

ab All 0.6 18 3 1.308

ab All 0 36 3 1.303

� change randf All 0.9 9 3 1.547

randf All 0.9 3 1 1.529

ab All 0.9 3 1 1.528

randf NonZero 0.9 9 3 1.513

ab NonZero 0.9 9 3 1.509

ab All 0.9 9 3 1.508

ab All 0.9 9 1 1.507

ab All 0.9 3 3 1.500

� change ab FiftyPercentile 0.9 36 1 1.919

nc change ab NonZero 0.9 3 5 1.974

ab FiftyPercentile 0.9 3 1 1.969

ab All 0.9 3 1 1.930

dc change ab FiftyPercentile 0.9 18 3 2.050

ab FiftyPercentile 0.9 18 1 1.949

ab All 0.9 3 1 1.905
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Table 5.13: Confusion matrices for 5-way output, with SFFS

(a) Plaque thickness change (All features
/ 36_5 / 0.6 / adaboosted J48 trees)

−− − 0 + ++
−− 1 1 4 0 0
− 2 40 168 13 0
0 1 91 704 85 2
+ 0 5 101 22 0
++ 0 0 2 1 0

(b) Lumen CSA change (All features / 36_3
/ 0.9 / adaboosted J48 trees)

−− − 0 + ++
−− 8 5 8 4 1
− 37 93 198 53 0
0 11 234 977 206 3
+ 8 36 169 40 2
++ 4 1 0 1 0

(c) Fibrous % change (All features / 9_3 / 0.9
/ random forests)

−− − 0 + ++
−− 4 22 4 1 0
− 11 564 495 81 0
0 3 945 5349 515 0
+ 1 111 511 104 0
++ 0 3 15 2 0

(d) Fibrous-fatty % change (Top 50% of fea-
tures / 36_1 / 0.9 / adaboosted J48 trees)

−− − 0 + ++
−− 16 21 0 4 0
− 36 615 255 157 6
0 17 571 3755 465 14
+ 1 77 204 60 1
++ 0 4 8 2 0

(e) Necrotic core % change (Non-zero subset of
features / 3_5 / 0.9 / adaboosted J48 trees)

−− − 0 + ++
−− 3 15 0 0 0
− 11 506 136 35 1
0 6 880 12239 797 8
+ 0 148 865 245 1
++ 0 4 42 12 0

(f) Dense calcium % change (Top 50% of fea-
tures / 18_3 / 0.9 / adabooted J48 trees)

−− − 0 + ++
−− 2 3 0 0 0
− 10 73 24 16 1
0 3 214 3077 436 9
+ 2 65 258 102 1
++ 0 1 13 6 0
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CHAPTER 6
DISCUSSION

6.1 Interpretation of results

A sophisticated work�ow for the processing of jointly acquired IVUS and x-ray

angiography has been presented here. The bifurcation modeling does not permit

analysis of disease in the branches themselves, but e�ciently solves 2 other problems:

a) analysis of the impact of bifurcations up on WSS, and modeling WSS in heavily

branched branched vessels e�ectively, and b) creating landmarks suitable for robust

and consistent registration even in cases where the borders in the main vessel have

enough variability to make shape-based registration techniques unreliable.

The registration consistently maps 2 IVUS pullbacks of a common vessel segment

into a common space, so that the data can be analyzed con�dently for changes in the

physiology. Visual inspection of pairs of pullbacks con�rms that, when registered, the

pairs of vessel segments match, and the quantitative validation performed in section

3.1.3 shows a statistically signi�cant match.

The database system developed for management of patient data vastly simpli�ed

managing a large pool of heterogeneous data. It also enabled increased collaboration

among researchers: a data set loaded into the system in Iowa was then available for

manual tracing by a cardiology resident in Chicago instantly. The database interfaced

seamlessly with a web interface that permitted managing the tracing queues for the

various residents working on the manual tracing, to ensure that work was evenly

divided, and that di�erent individuals were working on di�erent data sets. It also

permitted quick and seamless inventory management: the database could be queried

to see which patients were incompletely processed, or missing pieces of data, without

requiring us to manually trawl the data store each time.

Feature selection was ine�ective at improving classi�er results. It does, nonethe-

less, nicely complement the inter-feature correlations shown in �gure 5.4. Average
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in-class accuracy in table 5.7 appears to be better for the 3-class variant than for the

5-class, however, the generally poor performance of the −− and ++ classes overall

drags down the accuracy �gures for the 5-class cases more than it would otherwise.

All outputs had a signi�cant bias just below zero. In the case of the plaque

thickness change especially, this can be explained fairly easily with the statin drugs

the majority of the patients were on, although it would not explain why all features

seemed to have this bias. Nonetheless, the classi�ers all proved to be more adept at

predicting decreases than at predicting increases. It may be that some careful tuning

of the classi�er parameters might alleviate this, or it may be that the decreases more

often displayed discernible patterns that could be detected.

Input resampling with bias set to 0.9 seemed to make a clear di�erence in classi�er

performance. The vast majority of all winning classi�ers in the study had a 0.9

resampling bias. In fact, the only exceptions were the 3 winning plaque thickness

change classi�ers: one had a 0 bias, and the other two had 0.6 bias. This variation

may mean that resampling had a greater e�ect for the features other than plaque

thickness change.

Adaboosted J48 trees a majority of the best performing classi�ers, consistently

outperforming random forests � though random forests did appear in a few of the

winning classi�ers as well � namely plaque thickness change and �brous plaque %

change in the 5 class run.

Plaque thickness change performed the best with larger glob sizes, which would

suggest it was the noisiest of the parameters � it consistently did best with ag set to

72, which meant that it was best predicted at a per-slice level, and it tended to have

either 3 or 5 for sg. The other features ran the gamut of glob sizes, which, especially

given the stochastic nature of the classi�ers involved, would suggest that the other

features were relatively insensitive to glob size � although none, other than plaque

thickness change ever selected one with ag set to 72.
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6.2 Sources of uncertainty

This study contains many sources of uncertainty. Successful reduction of them

would almost certainly improve classi�er performance, by ensuring better alignment of

the data. Better quality control on the ECG signals would have eliminated the worst

gating issues in the IVUS, and made it easier to synchronize the angiograms with

the IVUS temporally. Severe cardiac arrhythmias could still have prevented perfectly

smooth images, but smaller defects like these were generally well compensated for in

the registration phase. We also would have had a larger pool of data to draw from. 32

patients is far smaller data set than we would have liked; even the full 89 that were

enrolled in the study would have been pushing the bounds of clinical signi�cance;

merely not having to exclude patients for bad gating would have brought the number

to 42, with which we could have generalized more e�ectively, and our observations

would have had more statistical power.

Because the DICOM and the VH data were collected from 2 di�erent workstations

in the cathlab for the generation of Volcano equipment used in this study, there were

occasionally synchronization issues between the two sides. When this happened, it

was sometimes possible for the DICOM frame (which we segmented) to vary slightly

from the corresponding VH frame (upon which the VH analysis was performed). This

creates unknown uncertainty with regard to the accuracy of the VH analysis; �gure

6.1 provides an illustration.

Many other patients were excluded because we never received the complete data

set. On the clinical side, data was lost or destroyed, and frequently we received

mislabeled data. With persistent followup, we were able to address many of the

issues with mislabeled data; however it was a recurring problem, and we were never

able to close all the gaps in the raw data provided. Thus for a combination of gating

and organizational issues, we only included 32 out of 89 patients.

Roughly half of the angiograms presented a signi�cant challenge in the segmenta-
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Figure 6.1: Slight border mismatch in the VH application due to lack of synchroniza-
tion.
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tion, because with the equipment the clinicians used initially, the catheter was insuf-

�ciently radio-opaque to be visible in the presence of contrast dye. The workaround

method involved estimating the position of the catheter from another frame in the

image at the same phase, where the catheter was visible instead of the vessel. This

improves the quality of what is essentially a blind guess, but is far inferior to the

segmentation that can be performed when both are clearly visible.

This was alleviated with the introduction of a vastly superior catheter, termed the

Miracle Wire, which shows up in the x-ray even when the vessel is fully inundated with

contrast dye. In the case of these subsequent angiograms, segmentation is trivial, and

highly accurate. The automated segmentation �awlessly �nds the vessel and catheter

borders every time, and the resultant 3-D reconstructions are much more reliable.

The projections were frequently taken with an eye towards only clinical relevance.

This is �ne for diagnostic purposes, but if the vessel is severely foreshortened, the

accuracy of the 3-D reconstruction, and our ability to estimate the absolute orienta-

tion, are severely limited. This hampers our ability to get accurate WSS estimates,

and limits our ability to accurately register the two pullbacks for analysis.

Other angiograms were inadequate because the protocol was neglected. In several

cases, only one projection was taken with a catheter at all. This signi�cantly impacts

the reliability of the 3-D reconstruction, and adds considerable uncertainty to any

indices that depend upon the 3-D geometry.

6.3 Future lines of inquiry

6.3.1 Acquisition protocol

Studies have been done as to the best angiographic projections for branch visibility.

If we were to do a subsequent study, attention to a small handful of details would

dramatically improve the quality of the data, and, presumably, classi�er accuracy:

1. Miracle-wire used for all angiograms, to ensure simultaneous visibility of catheter
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and lumen.

2. Angio projections chosen carefully to limit foreshortening, and ensure clear

branch visibility.

3. Two orthogonal projections taken with catheter and transducer in full view prior

to commencing automated pullback for each angiogram (some straightening and

tensioning is usually required to eliminate slack in the wire before the pullback

begins).

4. Careful examination of ECG signal prior to beginning procedure, to ensure

gating can be done consistently and reliably.

Patient data is di�cult and expensive to acquire, thus it is always good if even

marginal data can be used to increase the statistical signi�cance of a study. But the

4 above quality control issues are signi�cant in terms of guaranteeing the utility of

data in a study with many steps and many sources of uncertainty.

6.3.2 3-D reconstruction

One ongoing ambiguity in the 3-D reconstruction that was left open-ended in

the work of [39] concerns the absolute orientation of the vessel: the algorithm, as

implemented, is constrained in its ability to handle wrapping of the angle values.

This is currently fudged in the software with a button on the interface alternate

the representation between [-180,180] and [0,360]. Often, the software will come to

an estimate that is only a degree or two o� after the inversion button is pressed;

in these cases, no wrapping has occurred and the orientation is the same in either

representation. When the estimates di�er signi�cantly, however, the current approach

is to generate a VRML scene representation of each version, and then view both

juxtaposed against the angiograms.

The trajectory of the catheter is then examined in both, in comparison to where
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it appears on the angiographic projections. Bifurcations, if marked in the IVUS,

are also represented in the VRML scene as an additional set of �ducial points. The

human user then must choose which appears to be a better representation of the true

orientation of the vessel. If there is ambiguity, the RMS error as computed by the

reconstruction software can also be used as a hint, but as it is prone to being skewed

by a small number of misaligned frames, it cannot be trusted completely.

Horn[61] developed an alternate, quaternion-based approach to the geometric

analysis used in the reconstruction which avoids this ambiguity. It may be worth-

while to investigate reimplementation of portions of the reconstruction software to use

this approach, as mathematical elimination of the ambiguity would at least introduce

consistency into the process, and possibly also eliminate a certain amount of human

error. Obviously, both of these approaches fall short if the catheter is invisible in

the angiograms, as mentioned in section 6.2, thus the importance of Miracle Wire or

something similar.

The work presented in section 3.2 also o�ers some potential for reducing uncer-

tainties in the 3-D reconstruction. Our results in section 3.2.4 show that our detwisted

versions are comparable in accuracy to the originals, they don't o�er a compelling

improvement. If the angiograms consistently featured a speci�c, identi�able subset of

branches, which could be matched to speci�c IVUS branches based on clinical knowl-

edge, this method may begin to emerge as useful, especially if the bifurcations could

be segmented in an automated fashion, which would allow them to be matched to an

atlas heuristically.

6.3.3 TCFA analysis

The approaches to TCFA labeling discussed in section 4.2.1.4 o�er an intriguing

tool set for identifying at-risk lesions in CAD patients; however, they are limited in

the sense that they require the formulation of increasingly complex and di�cult to

implement rules and o�er no guarantee of improvement in classi�cation performance.
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Assuming a human observer can identify TCFA lesions, at least based upon the VH

data (it's generally considered impossible based upon the B-mode alone), this is an

ideal application for machine learning/object recognition approaches.

Rather than prepare a training set in advance, which is potentially labor intensive,

it makes more sense to use the automated, rule-based classi�cation as a starting

point. A human arbiter would be presented with a succession of randomly chosen VH

overlay images, chosen 50/50 between slices for which the rule-based TCFA labeling

was each of true and false. The user would choose between yes, no, and unsure,

where the third category excludes the image in question from the training set. When

a stopping criterion had been reached (either su�cient images selected, or if the

training is performed on-line, the training error from newly inserted images falls

below a predetermined threshold), the classi�er would be regarded as trained.

A classi�er would presumably operate on a log-polar version of the VH data in

order to guarantee rotation invariance, and then employ an approach based upon

small local features to identify speci�c plaque textures common to images labeled

as TCFA. The best known approach of this form is SIFT (Scale Invariant Feature

Transform) [62]; other promising approaches include Hotta's work with visual words

based on Gabor �lters [63] and Zhang's hybrid SVM/KNN approach [64].
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CHAPTER 7
CONCLUSION

Out of 89 patients from which baseline and followup data were collected, 32 were

analyzed to completion. These were used to train and test a series of classi�ers, in

an e�ort to characterize the development and progression of atherosclerotic coronary

artery disease on a one-year timescale. Initially, we had hoped to be able to reliably

identify 5 output classes (− − / − /0/ + / + +). However, due to the distribution

of the data, and the small size of the data set, we found we achieved much better

classi�cation results when restricting the classes to 3, by merging −− with − and

++ with +.

Results are promising. They are considerably better than chance. There is reason

for optimism that with more data, and better quality data, better, more reliable

predictions would be a possibility.

Out of 5 aims laid out in section 1.3, the results can be summarized as follows:

1. Compensation for rotational artifacts of the catheter (section 3.2) was achieved

in a way that was di�cult to either evaluate conclusively or utilize with the

data available in this study, given the dependence upon bifurcations visible in

both the angiograms, and the IVUS. Nonetheless, the method developed does

appear to have normalized the absolute orientation estimate (�gures 3.12,3.13).

It shows promise for future studies that take it into account at acquisition time.

2. The point-to-point registration method was a complete success. Figure 3.1b

demonstrates that the method achieves correct results from the point of view

of visual inspection; the results in table 3.1 and �gures 3.2 and 3.3 show that

the results are quantitatively convincing as well.

3. The data from all patients made available to this study was thoroughly exam-

ined; the 32 found to be suitable were fully analyzed and used for the training
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and testing of the classi�er. This aim can be considered to be a complete suc-

cess.

4. Both through the action of the decision tree algorithms used for classi�cation

(section 5.3.1), and through the SFFS feature selection procedure used to re�ne

the set of inputs to said classi�er (section 5.2.1), a suitable subset of features

was identi�ed for the training and testing of a classi�cation system. This aim

can be considered a success.

5. The classi�er was limited in its ability to detect large changes, due to the heavy

bias towards zero change in the input data. The data also seemed to present a

bias towards reduced disease, and the classi�cation results, in particular, per-

formed better in samples where the disease regressed. This may well owe to the

fact that the patients enrolled in this study were on statins and other aggressive

cholesterol reducing drugs, which if the results are to be believed, work rather

well. This aim can also be considered to be a success.

A larger study, with more patients, and perhaps more stringent controls on the

acquisition protocol should be planned, to solidify the statistical signi�cance of the

work in this study before any jumps to clinical applications are made. However, a

considerable amount of work was done in this study to the end of advancing the

state of the art of image analysis and model construction based upon IVUS and x-ray

angiography, which should lower the bar for a subsequent study, and moreover open

the door to the inclusion of OCT data as an additional modality, which has particular

relevance to the inner elastic lamina and the disease state closest to the interior of

the vessel.

Regardless of the limitations, we feel this project makes a signi�cant contribution

to the body of work in the �eld of cardiac image analysis. The identi�cation and

modeling of bifurcations, as well as the work on mesh merging and automation of
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the WSS analysis is wholly novel and unlike other approaches in the literature. Vir-

tually all vascular modeling software available presumes an image volume that can

be segmented into a vessel tree with level set methods; this is completely impossible

with IVUS, thus a method for joining disjoint structured grids in space had to be

developed.

The landmark based registration method works reliably, and is immune to vari-

ations in the border produced either by inter-observer error in manual tracing, by

variations in an automated segmentation, or by physiological changes between im-

age acquisitions. It adapts robustly to rotational movement within the images, and

resamples in a way that yields correct, reliable results.

Moreover, the collation of the data from these 32 patients into a uni�ed system for

the analysis of the multi-modality image sets, alongside demographic and biomarker

data, was a considerable undertaking. Through the construction of the classi�cation

pipeline, we have a) built a nontrivial body of software that can be easily used for ad-

ditional patient data in subsequent studies, and, more importantly, b) demonstrated

the feasibility and utility of using decision-tree based machine learning techniques to

predict physiological changes in the assessment of coronary artery disease.
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APPENDIX
SCHEMA DIAGRAM

The �gures that follow depict the entity relationships present in the relational

database used to organize this project. Because of the number of tables and the

complexity of the full graph, it has been broken into 4 subgraphs, in order to make

the text readable and the relationships visually navigable. Certain tables appear on

multiple pages, and thus examining the relevant pages side-by-side may make it easier

to follow the relationships.

The IVUS is present in both �gure A.1 and �gure A.2. Figure A.1 illustrates how

the IVUS table �ts into the root portion of the hierarchy, where high level objects

such as patients are stored; �gure A.2 shows how the various data items that depend

upon the IVUS table relate to one another. Likewise with the angiogram table in

�gures A.1 and A.3.

Figure A.4 shows how the angio and IVUS entities reconnect for the 3-D recon-

struction and the portion of the data modeling that depends upon the reconstruction.

Dotted lines are used to map foreign key relationships. These are labeled with text

that contains both the source and destination key. All primary keys in this schema

are integers. In most cases, they are bound to monotonically increasing sequences

(this is evident when = nextval appears in the same line). In a small handful of

cases, the primary key is the foreign key. This is the case in the WSS table, where

there can be exactly 1 WSS per fusion. This is exploited in the WSS computation

pipeline, in that the status of all WSS analyses can be queried with a simple join of

the WSS and fusion tables.

The �nalsegmentations table is used to allow someone manually tracing an IVUS

data set to mark 1 particular version of the borders as de�nitive. This is important

because with the tracing process being time consuming, people often save incremen-

tally. This simpli�es the process of selecting a segmentation to use in the downstream

analysis.
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Tracerassignments is used for personnel management � it permits the delegation

of each IVUS data set to a particular expert tracer, so that they don't step on each

others' toes, and so that there is accountability in the system.

Figure A.1: Root portion of the database schema hierarchy.

angio

importedby: text
acquisitiondate: timestamp with time zone
angioid: integer = nextval('sequence ... lass)
angulationa: numeric(2,0)
angulationb: numeric(2,0)
colsa: integer
colsb: integer
fova: integer
fovb: integer
fpsa: real
fpsb: real
framesa: integer
framesb: integer
importdate: timestamp with time zone
mmpixa: double precision
mmpixb: double precision
nphases: smallint
pullback: integer
rawdatapath: text
remarks: text
rotationa: numeric(2,0)
rotationb: numeric(2,0)
rowsa: integer
rowsb: integer
sicda: integer
sicdb: integer
siida: integer
siidb: integer
gantrytype: smallint = 2
importname: text

datasets

label: text
id: integer = nextval('sequence ... lass)
fspath: text

patients

dataset: integer
patientname: character varying(100)
id: integer = nextval('sequence ... lass)
smokinghistory: boolean
currentsmoker: boolean
diabetes: boolean
hypertension: boolean
hyperlipidimia: boolean
familyhistory: boolean
previousmi: boolean
hopolymorphism: boolean
enospolymorphism: boolean
betablockers: boolean
acinhibitors: boolean
statins: boolean
aggressivetreatment: boolean
race: e_race
stabledisease: e_clinical_stability
age: integer
sex: e_sex
angina: e_angina

pullbacks

vessel: character varying(20)
id: integer = nextval('sequence ... lass)
study: integer
choltotal: real
cholhdl: real
cholldl: real
triglycerides: real
cholapoa: real
cholapob: real
markeril6: real
markervcam: real
markericam: real
markertnfalfa: real
markercd40: real
markercrp: real
label: text
ulceration: boolean

studies
date: timestamp with time zone
hospital: character varying(50)
physicianname: character varying(50)
patient: integer
id: integer = nextval('sequence ... lass)
studyname: character varying(30)

{angio_pullback_fkey}

{patients_dataset_fkey}

{pullbacks_study_fkey}

{studies_patient_fkey}

ivus
importedby: text
dcm_instanceuid: text
acquisitiondate: timestamp with time zone
remarks: text
pullback: integer
phases: smallint
cols: integer
fov: real
fps: real
frames: integer
importdate: timestamp with time zone
id: integer = nextval('sequence ... lass)
mmps: numeric(4,2)
rows: integer
vlipath: text
vhrpeaks: integer[]
importname: text
gating_type: e_gating

{ivus_pullback_fkey}
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Figure A.2: IVUS portion of the database schema hierarchy.

�nalsegmentations

ivusid: integer
ivussegid: integer

ivusbranch
path: text
branchid: integer = nextval('sequence ... lass)
landmarkid: integer
radius: real

ivusregistrations

id: integer = nextval('sequence ... lass)
startframea: integer
startframeb: integer
endframea: integer
endframeb: integer
performedby: text
dateperformed: timestamp with time zone
blivusseg: integer
fuivusseg: integer

ivusseg

path_long: text
path: text
performedby: text
minradius: real
center_x: integer
center_y: integer
endframe: integer
ivusid: integer
maxradius: real
nlongplanes: integer
phase: smallint
remarks: text
segid: integer = nextval('sequence ... lass)
segstatus: smallint
startframe: integer
dateperformed: timestamp with time zone
splineangles: integer[]

landmarkcorrespondencemap

registration: integer
baselinelandmark: integer
followuplandmark: integer
id: integer = nextval('sequence ... lass)

registrationlandmarks

description: text
ivussegid: integer
landmarkid: integer = nextval('sequence ... lass)
markedby: text
datemarked: timestamp with time zone
landmarktype: e_landmark
bbox_min: integer[]
bbox_max: integer[]

tracerassignments

tracername: text
id: integer = nextval('sequence ... lass)
ivuspbid: integer

vh
dateperformed: timestamp with time zone
ivussegid: integer
vlipath: text
performedby: text
vhid: integer = nextval('sequence ... lass)
viasswversion: numeric(5,2)

{�nalsegmentations_ivusid_fkey}

{�nalsegmentations_ivussegid_fkey}

{ivusbranch_landmarkid_fkey}

{ivusregistrations_blivusseg_fkey}{ivusregistrations_fuivusseg_fkey}

{ivusseg_ivusid_fkey}

{landmarkcorrepondencemap_registration_fkey}

{landmarkcorrespondencemap_baselinelandmark_fkey}{landmarkcorrespondencemap_followuplandmark_fkey}

{registrationlandmark_ivussegid_fkey}

{ivuspbid_ivus_fkey}

{vh_ivussegid_fkey}

ivus
importedby: text
dcm_instanceuid: text
acquisitiondate: timestamp with time zone
remarks: text
pullback: integer
phases: smallint
cols: integer
fov: real
fps: real
frames: integer
importdate: timestamp with time zone
id: integer = nextval('sequence ... lass)
mmps: numeric(4,2)
rows: integer
vlipath: text
vhrpeaks: integer[]
importname: text
gating_type: e_gating
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Figure A.3: Angiogram portion of the database schema hierarchy.

angio

importedby: text
acquisitiondate: timestamp with time zone
angioid: integer = nextval('sequence ... lass)
angulationa: numeric(2,0)
angulationb: numeric(2,0)
colsa: integer
colsb: integer
fova: integer
fovb: integer
fpsa: real
fpsb: real
framesa: integer
framesb: integer
importdate: timestamp with time zone
mmpixa: double precision
mmpixb: double precision
nphases: smallint
pullback: integer
rawdatapath: text
remarks: text
rotationa: numeric(2,0)
rotationb: numeric(2,0)
rowsa: integer
rowsb: integer
sicda: integer
sicdb: integer
siida: integer
siidb: integer
gantrytype: smallint = 2
importname: text

angiobranch

datemarked: timestamp with time zone
markedby: text
ivusbranchid: integer
angiorectid: integer
branchid: integer = nextval('sequence ... lass)
proximalpta: point
proximalptb: point
distalpta: point
distalptb: point

angiorecti�cations

performedby: text
rectid: integer = nextval('sequence ... lass)
scaleonlyrect: boolean
angioid: integer
dateperformed: timestamp with time zone
path: text
xcoe�a: text
xcoe�b: text
ycoe�a: text
ycoe�b: text

angioseg

dateperformed: timestamp with time zone
endpointa: point
endpointb: point
interpointsa: path
interpointsb: path
path: text
performedby: text
recti�cation: integer
refpointa: point
refpointb: point
remarks: text
roia: integer
roib: integer
segid: integer = nextval('sequence ... lass)
startpointa: point
startpointb: point
statusa: smallint
statusb: smallint
phase: integer

ivusbranch
path: text
branchid: integer = nextval('sequence ... lass)
landmarkid: integer
radius: real

{angiobranch_ivusbranchid_fkey}

{angiobranch_angiorectid_fkey}

{angiorecti�cations_angioid_fkey}

{angioseg_recti�cation_fkey}
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Figure A.4: Fusion portion of the database schema hierarchy.

angioseg

dateperformed: timestamp with time zone
endpointa: point
endpointb: point
interpointsa: path
interpointsb: path
path: text
performedby: text
recti�cation: integer
refpointa: point
refpointb: point
remarks: text
roia: integer
roib: integer
segid: integer = nextval('sequence ... lass)
startpointa: point
startpointb: point
statusa: smallint
statusb: smallint
phase: integer

fusion
performedby: text
dateperformed: timestamp with time zone
absrotation: real
angiosegid: integer
id: integer = nextval('sequence ... lass)
issmoothed: boolean
ivussegid: integer
path: text
ptsperslice: integer
ivustwistingcorr: integer[]
absrotrmserr: real

ivusseg

path_long: text
path: text
performedby: text
minradius: real
center_x: integer
center_y: integer
endframe: integer
ivusid: integer
maxradius: real
nlongplanes: integer
phase: smallint
remarks: text
segid: integer = nextval('sequence ... lass)
segstatus: smallint
startframe: integer
dateperformed: timestamp with time zone
splineangles: integer[]

vrml
performedby: text
dateperformed: timestamp with time zone
absrotation: real
angiosegid: integer
vrmlid: integer = nextval('sequence ... lass)
ivussegid: integer
path: text
ivustwistingcorr: integer[]

wss

performedby: text
dateperformed: timestamp with time zone
id: integer
path: text
complete: boolean = false

{fusion_angiosegid_fkey}
{fusion_ivussegid_fkey}

{vrml_angiosegid_fkey}
{vrml_ivussegid_fkey}

{wss_fusion_fkey}
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